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Weyl Algebra

Definition (A(Q))

The Weyl Algebra A(Q) is the ring of linear differential
operators in the variable x with polynomial coefficients.

Operators:
Multiplication by x : X (f (x)) = xf (x).
Derivation by x : D(f (x)) = f ′(x).

Pseudo-commutation rule: DX = XD + 1.
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Holonomic functions

Definition (annihilator)

w ∈ A(Q) is an annihilator for f (x) if w(f (x)) = 0.

Definition (holonomic function)

A function f (x) is holonomic if it admits an annihilator w ∈ A(Q).

Example

The function f (x) = ex sin (x)
1−x is holonomic, since

((X − 1)D2 + (4− 2X )D − 4 + 2X )(f (x)) = 0.
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Membership Problem for HOLO

HOLO is the class of the holonomic functions.

Problem (Membership for HOLO)

Input: An analytic function f (x).

Output: 1 if f (x) is holonomic, 0 otherwise.

A constructive solution: Find an annihilator for f (x).

Depending on how f (x) is represented, different techniques
have been studied.
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Membership Problem for HOLO (cont.)

ALGEBRAIC APPROACH: It exploits

closure properties of HOLO w.r.t. +, ·, �, . . .;

RAT ⊂ ALG ⊂ HOLO;

Limitations: Not all holonomic functions are obtained by means
of the closure properties.

ANALYTIC APPROACH: It exploits

Holonomic functions have finitely many singularities;

well known asymptotic form of coefficients near regular
singularities.

Limitations: Useful for proving non-holonomicity, it does not
provide annihilators.
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Symbolic approach

The framework:

a finite set F of functions having a derivation rule;

CLOSE(F), i.e. the closure of F with respect to sum,
product and composition;

a function h(x)∈ CLOSE(F) suspected to be in HOLO.
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Canonical representation

Canonical representation of h(x):

h(x) =
k∑

j=0

rj(x) aj(x) where

rj(x) are rational functions;

a0(x) = 1;

aj(x), 1 ≤ j ≤ k are finite products of nonrational functions,

aj(x) =

ej∏
l=1

tjl(x), tjl ∈ CLOSE(F)
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Example

h(x) = x2 +
1

1− x
earcsin (x) ln (1− x) =

= r0(x) a0(x) + r1(x) a1(x) =

= r0(x) a0(x) + r1(x) t10(x) t11(x)

+

1 *

earcsin (x) ln (1− x)

xx
xx

xx
xx

xx
xx

FFFFFFFFFFF

33
33

33
3

��
��
��
�

x2 1
1−x

r0(x) = x2;

a0(x) = 1;

r1(x) = 1
1−x ;

a1(x) = t10(x)t11(x);

t10(x) = earcsin (x);

t11(x) = ln (1− x).
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D-close sets

Definition (D-closed set)

A set F of functions is said D-closed if the derivative of any
function in F can be expressed as a finite sum (with rational
coefficients) of products of elements in F .

F D-closed =⇒ ∀t(x) ∈ F , t ′(x) has a canonical rep. in F .

Example

F = {sin (cos (x)), cos (cos (x)), cos (x), sin (x)} is D-closed,

D(sin (cos (x))) = − sin (x) cos (cos (x));

D(cos (cos (x))) = sin (x) sin (cos (x));

D(sin (x)) = cos (x) and D(cos (x)) = − sin (x);
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Definition (σ(f ))

σ(f ) is the smallest integer k such that
∃A D-closed, card(A) = k , f ∈ A

Lemma

Let F be a finite set of functions and f (x) ∈ CLOSE(F). Then,
∀g ∈ F , σ(g) < ∞ =⇒ σ(f ) < ∞

As a consequence, given a canonical representation

h(x) =
k∑

i=0

ri(x)

ei∏
j=1

t
mij

ij (x),

there is a finite D-closed set B(h) containing {tij}.
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A grammar for finite D-closed sets

Let B(h) = {t1(x), . . . , tq(x)} be a finite D-closed set:

D(t1(x)) =

k1∑
i=1

r1i(x)

q∏
j=1

t
m1ij

j (x)

...

D(tq(x)) =

kq∑
i=1

rqi(x)

q∏
j=1

t
mqij

j (x)

B(h) leads to the following CF grammar . . .
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A grammar for finite D-closed sets (continued)

GB(h) = 〈V ,Σ, P, S〉, where

V = {T1, . . . , Tq, S},
Σ = {t1, . . . , tq},
P is the set of productions

S → T1 | T2 | . . . | Tq,

T1 → t1 | T m111
1 T m112

2 · · ·T m11q
q | . . . | T

m1k11

1 T
m1k12

2 · · ·T
m1k1q
q ,

...

Tq → tq | T
mq11

1 T
mq12

2 · · ·T mq1q
q | . . . | T

mqkq1

1 T
mqkq2

2 · · ·T
mqkqq
q .
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Example (h(x) = sin(cos(x)))

B(h) = {sin(cos(x)), sin(x), cos(x), cos(cos(x))}.

This leads to the grammar

GB(h) = 〈{T1, T2, T3, T4, S}, {t1, t2, t3, t4}, P, S〉

where P = {S → T1|T2|T3|T4,

T1 → t1|T3T2, T2 → t2|T3T1,

T3 → t3|T4, T4 → t4|T3}

with t1 ≡ sin(cos(x)), t2 ≡ cos(cos(x)), t3 ≡ sin(x), t4 ≡ cos(x).

Massazza, Radicioni M.I.U.R. PRIN Meeting, Varese 2006



Holonomic functions
Symbolic approach

Summary

Canonical representation
D-closed sets and CF grammars
Differential equations for holonomic functions

Example (h(x) = sin(cos(x)))

B(h) = {sin(cos(x)), sin(x), cos(x), cos(cos(x))}.

This leads to the grammar

GB(h) = 〈{T1, T2, T3, T4, S}, {t1, t2, t3, t4}, P, S〉

where P = {S → T1|T2|T3|T4,

T1 → t1|T3T2, T2 → t2|T3T1,

T3 → t3|T4, T4 → t4|T3}

with t1 ≡ sin(cos(x)), t2 ≡ cos(cos(x)), t3 ≡ sin(x), t4 ≡ cos(x).

Massazza, Radicioni M.I.U.R. PRIN Meeting, Varese 2006



Holonomic functions
Symbolic approach

Summary

Canonical representation
D-closed sets and CF grammars
Differential equations for holonomic functions

GB(h) and HOLO

Theorem

If the language L(GB(h)) is finite, then h(x) is holonomic.

Proof (outline): Let ρc be the congruence generated by ti tj = tj ti
and observe that:

the commutative image L(GB(h))/ρc is finite;

L(GB(h))/ρc is a finite set of generators for {Di(h(x))}.
Then, h(x) is holonomic.
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Finding an annihilator

Let h(x) with L(GB(h)) finite. Then, for all i ∈ N:

Di(h(x)) =

ki∑
j=1

rij(x)aij(x),

where aij(x) =
∏e

l=1 t
mij

ij (x) (mij ∈ N) and tij(x) ∈ B(h).

Note that:

L(GB(h)) finite =⇒ {aij(x)}i,j>0 finite.

The subspace {Di(h(x))} is finitely generated.
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Differential equations for holonomic functions

Example (A system for h(x) = earcsin (x))

B(h) = {earcsin (x),
√

1− x2}

D0(h(x)) = a11(x),

D1(h(x)) =
1

1− x2 a22(x),

D2(h(x)) =
1− x2

x4 − 2x2 + 1
a31(x) +

x
x4 − 2x2 + 1

a32(x),

where

a11(x) = a31(x) = earcsin (x);

a22(x) = a32(x) =
√

1− x2earcsin (x).
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Finding an annihilator (cont. I)

Let (a1(x), . . . , an(x)) = {aij(x)}i,j>0. Then, the system

Di(h(x)) =
n∑

j=1

rij(x)aj(x), 0 ≤ i ≤ n,

can be written as
R · a = v,

where

R = [rij(x)](n+1)×n,

a = (a1(x), . . . , an(x))T ,

v = (D0, . . . , Dn)T .
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Finding an annihilator (cont. II)

An annihilator w ∈ A(Q) for h(x) can be obtained by computing

w = det(v|R),

where v|R is the augmented matrix of the system

R · a = v.

If det(v|R) = 0, then the matrix is singular. We compute the
determinant of a square submatrix of the reduced echelon form
of v|R.
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An annihilator w ∈ A(Q) for h(x) can be obtained by computing
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Differential equations for holonomic functions

Example (A differential equation for h(x) = earcsin (x))

In the case of
h(x) = earcsin (x)

v|R =

 D0 1 0
D1 0 1
D2 1−x2

x4−2x2+1
x

x4−2x2+1


det(v|R) = (x2 − 1)D2 + xD + 1
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Holonomic functions
Symbolic approach

Summary

Conclusions

The symbolic approach

allows to recognize a wide class of holonomic functions;

provides annihilators for holonomic functions;

is simple and efficient;

can be useful for negative proofs.

Further developments and open problems

Extension to multivariate functions and D-finite series.

Characterize F such that

∀h ∈ CLOSE(F), ]L(GB(h)) = ∞ ⇐⇒ h 6∈ HOLO.
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Appendix A: Negative proofs

A non-holonomic function: h(x) = sin(cos(x))

B(h) = {sin(cos(x)), sin(x), cos(x), cos(cos(x))}.

GB(h) = 〈{T1, T2, T3, T4, S}, {t1, t2, t3, t4}, P, S〉 where

P = {S → T1|T2|T3|T4, T1 → t1|T3T2, T2 → t2|T3T1,

T3 → t3|T4, T4 → t4|T3}.

{t2k
3 t1|k ≥ 0} ⊆ L(GB(h)) =⇒ L(GB(h)) not finite.

Span(sin(x)2k sin(cos(x))) ⊆ Span(Di sin(cos(x))).

h(x) = sin(cos(x)) is not holonomic.

Back
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