A SAT-based parser and completer for pictures specified by tiling

Matteo Pradella Stefano Crespi Reghizzi

Politecnico di Milano & CNR IEIIT-MI

PRIN "Linguaggi Formali e Automi: aspetti matematici e applicativi", Varese 2006.07.17

Parsing 2D languages

Tiling Systems (TS) [GR97]:

parsing is NP-complete [Lindgren+Moore+Nordahl98].

Hence, parsing Tile Rewriting Grammars (TRG) is NP-complete.

Matz's Context-Free Picture Grammars (CFPG): parsing a $n \times n$ picture takes $O(n^5)$ time [We06].

Is parsing TS practical?

It does not seem so, but:

in practice, some NP-complete problems are successfully tackled with heuristics.

For example: Model-checking in verification (e.g. SPIN, SMV), the *Boolean Satisfiability Problem* (SAT) (e.g. zChaff, Sato, MiniSAT).

Main idea: encode the TS parsing problem into SAT.

The encoding

Consider a Tiling System $(\Sigma, \Gamma, \Theta, \pi)$.

The encoding is based on the inverse projection of the input picture $\pi^{-1}(p)$.

Consider a possible inverse projection $q \in \pi^{-1}(p)$: proposition $Q^a_{(i,j)}$ stands for q(i,j) = a.

The first formula represents all possible inverse projections of *p*:

$$F_{1} := \bigwedge_{(i,j) \in [(1,1)..|p|]} \left(\bigvee_{a \in \pi^{-1}(p(i,j))} Q^{a}_{(i,j)} \right)$$

The second formula states that q must satisfy Θ :

$$F_2 := \bigwedge_{(i,j)\in[(1,1)..|p|]} \left(\bigvee_{\theta\in\Theta} \left(\bigwedge_{h,k\in[0,1]} Q_{(i+h,j+k)}^{\theta(h+1,k+1)} \right) \right)$$

The last formula contains the exclusivity constraints:

$$F_3 := \bigwedge_{(i,j) \in [(1,1)..|p|]} \text{OnlyOne}_{a \in \Gamma} \left(Q^a_{(i,j)} \right)$$

The TS-recognition problem is then encoded as the propositional formula $F_1 \wedge F_2 \wedge F_3$

The tool (SatTS)

The SatTS prototype is a command-line tool: we define the TS and a picture in a file, then we call SatTS and obtain either a suitable inverse projection, or *UNSAT*.

Thanks to F_3 the tool accepts *partially specified* pictures (i.e. with *don't cares* symbols "?"), or also *totally unspecified* pictures (i.e. we know just the size).

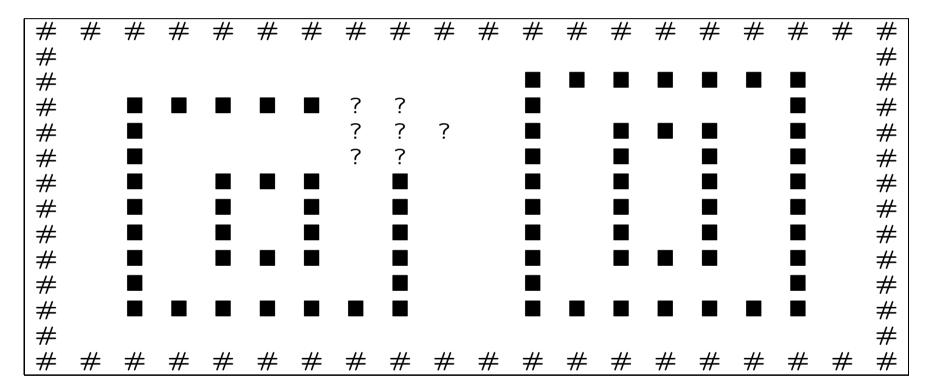
SatTS is written in Scheme, so it is possible to use Scheme expressions to define complex tilings in a compact and readable way.

Common set operations (union, intersection, complement) and tiling operations $(B_{2,2})$ are already available. (More on this later).

Example: Chinese boxes on a background

$$\pi(x) = \blacksquare, \text{ for } x \in \{ \nearrow, \searrow, \swarrow, \swarrow, \uparrow, \downarrow, \leftarrow, \rightarrow \};$$

$$\pi(\mathsf{blank}) = \mathsf{blank}$$



Example picture:

#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#
#																			#
#											\nearrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\searrow		#
#		~	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\searrow			Ť						\downarrow		#
#		Ť						\downarrow			\uparrow		\nearrow	\rightarrow	\searrow		\downarrow		#
#		Ť						\downarrow			\uparrow		\uparrow		\downarrow		\downarrow		#
#		Ť		\nearrow	\rightarrow	\searrow		\downarrow			Ť		Ť		\downarrow		\downarrow		#
#		Ť		\uparrow		\downarrow		\downarrow			Ť		Ť		\downarrow		\downarrow		#
#		Ť		\uparrow		\downarrow		\downarrow			Ť		Ť		\downarrow		\downarrow		#
#		Ť		$\overline{\ }$	\leftarrow			\downarrow			Ť		~	\leftarrow			\downarrow		#
#		Ť						\downarrow			Ť						\downarrow		#
#		~	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow				~	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow			#
#																			#
#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#

We obtain the output:

Example: Three colors map coloring

The tool gives freedom to specify the tiling with complex expressions (not just $B_{2,2}$).

Colors =
$$\{ \bigstar, \bigstar, \clubsuit \}$$
; Boundary: \diamond

$$\pi(\diamondsuit) = \diamondsuit; \pi(c) = \blacksquare$$
 for $c \in$ Colors.

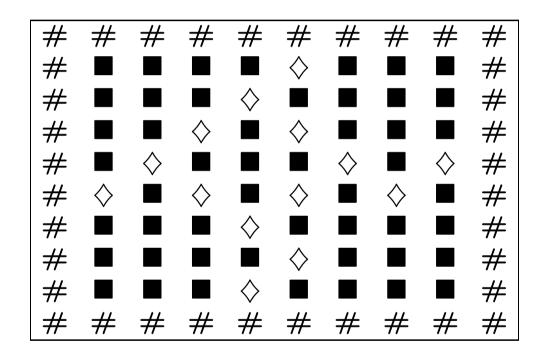
 $\Theta = \overline{\Theta_1 \cup \Theta_2 \cup \Theta_3}, \text{ where:}$

$$\Theta_1 = \left\{ \begin{bmatrix} \diamondsuit & \bigstar \\ \bigstar & \diamondsuit \end{bmatrix}, \begin{bmatrix} \diamondsuit & \bigstar \\ \bigstar & \diamondsuit \end{bmatrix}, \begin{bmatrix} \diamondsuit & \bigstar \\ \bigstar & \diamondsuit \end{bmatrix}, \begin{bmatrix} \diamondsuit & \diamond \\ \diamondsuit & \bigstar \end{bmatrix}, \begin{bmatrix} \bigstar & \diamondsuit \\ \diamondsuit & \bigstar \end{bmatrix}, \begin{bmatrix} \bigstar & \diamondsuit \\ \diamondsuit & \bigstar \end{bmatrix}, \begin{bmatrix} \bigstar & \diamondsuit \\ \diamondsuit & \bigstar \end{bmatrix}, \begin{bmatrix} \bigstar & \diamondsuit \\ \diamondsuit & \bigstar \end{bmatrix}, \begin{bmatrix} \bigstar & \diamondsuit \\ \diamondsuit & \bigstar \end{bmatrix} \right\}$$

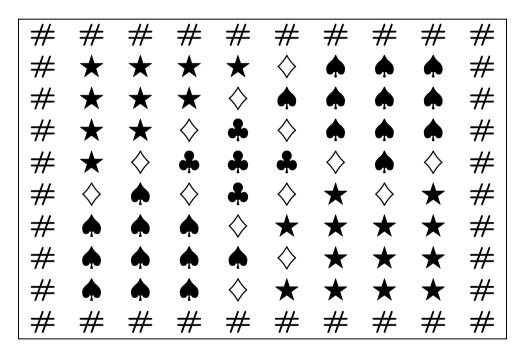
i.e. two neighbors have the same color

$$\Theta_{2} = \begin{cases} i = \Diamond = j \\ & \lor \\ k = \Diamond = l \\ k = l \\ \vdots & \ddots \\ k = \Diamond = k \\ & \downarrow \\ j = \Diamond = l \end{cases}; \quad \Theta_{3} = \begin{cases} i, j \in \operatorname{Colors} \land i \neq j \\ & \lor \\ k, l \in \operatorname{Colors} \land k \neq l \\ & \downarrow \\ i, k \in \operatorname{Colors} \land i \neq k \\ & \lor \\ j, l \in \operatorname{Colors} \land j \neq l \end{cases}$$

(we do not consider straight vertical or horizontal borders for simplicity)



SatTS tells us how to color it:



Example: Chinese boxes (no background)

This is the same language we used to present Tile Rewriting Grammars.

An equivalent TS is the following:

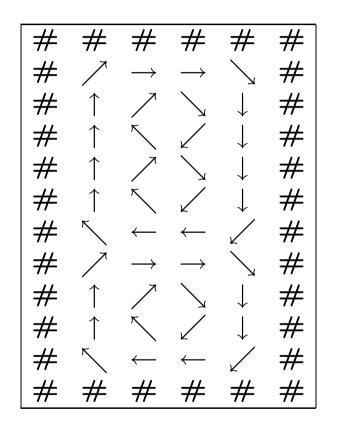
$$\Theta = \begin{cases} i \in \{\rightarrow, \nearrow\} \Rightarrow j \in \{\rightarrow, \searrow\} \\ & \lor \\ i \in \{\downarrow, \searrow\} \Rightarrow l \in \{\downarrow, \swarrow\} \\ i \in \{\downarrow, \swarrow\} \Rightarrow l \in \{\downarrow, \swarrow\} \\ & \lor \\ k \in \{\leftarrow, \swarrow\} \Rightarrow k \in \{\leftarrow, \frown\} \\ & \lor \\ k \in \{\uparrow, \diagdown\} \Rightarrow i \in \{\uparrow, \nearrow\} \end{cases}$$

$$\pi(x) = \circ, \text{ if } x \in \{ \rightarrow, \leftarrow, \uparrow, \downarrow \}; \\ \pi(\nearrow) = \ulcorner; \pi(\nwarrow) = \llcorner; \pi(\searrow) = \urcorner; \pi(\swarrow) = \lrcorner.$$

A picture:

#	#	#	#	#	#
#	Г	0	0	٦	#
#	0	Г	Г	0	#
#	0	L		0	#
#	0	Г	Г	0	#
#	0	L		0	#
#	L	0	0		#
#	Г	0	0	Г	#
#	0	Г	Г	0	#
#	0	L		0	#
#	L	0	0		#
#	#	#	#	#	#

Its inverse projection:



Example: Chinese blobs

This language is analogous to the Chinese boxes with a blank background. The main difference is that the shape of the box can be anything.

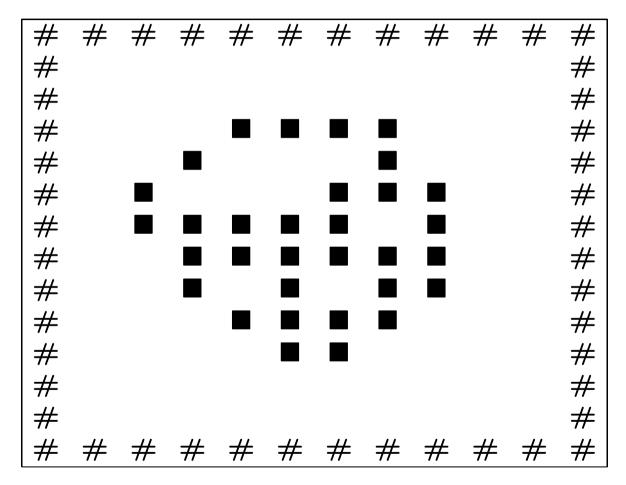
 $\pi(x) = \blacksquare, \text{ if } x \in \{ \nearrow, \searrow, \nwarrow, \swarrow\};$ $\pi(\text{blank}) = \text{blank}.$

 $\Theta = \Theta_1 \cup \Theta_2$, where:

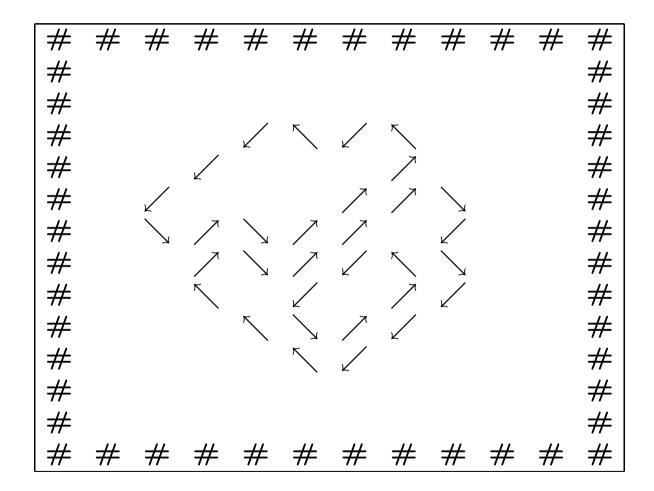
$$\Theta_{1} = \begin{cases} i = \downarrow \Rightarrow \text{OnlyOne}(j = \measuredangle, k = \measuredangle, l = \searrow) \\ \lor \\ i = \checkmark \Rightarrow \text{OnlyOne}(j = \measuredangle, k = \measuredangle, l = \diagdown) \\ \lor \\ j = \measuredangle \Rightarrow \text{OnlyOne}(i = \diagdown, k = \measuredangle, l = \searrow) \\ \lor \\ \cdots \end{cases} \end{cases}$$

$$\Theta_2 = \left\{ \begin{bmatrix} \ddots & \ddots \\ \ddots & \ddots \end{bmatrix}, \begin{bmatrix} \ddots & \ddots \\ \ddots & \ddots \end{bmatrix}, \begin{bmatrix} \ddots & \ddots \\ \ddots & \ddots \end{bmatrix}, \begin{bmatrix} \ddots & \ddots \\ \ddots & \ddots \end{bmatrix}, \begin{bmatrix} \ddots & \ddots \\ \ddots & \ddots \end{bmatrix} \right\}$$

Is this a correct Chinese blob?



Yes:



Conclusions

The SatTS prototype is fast enough to experiment on reasonably sized (e.g. 200×200) samples

It offers convenient ways for specifying tiles

It has picture completion capabilities

Future: perhaps error correction