On the complexity of unary tiling-recognizable languages

A. Bertoni, M. Goldwurm, V. Lonati

Università degli studi di Milano Dipartimento di Scienze dell'Informazione

Outline

Two-dimensional languages Representation of unary pictures Main result Some details...

Two-dimensional languages

Basic definitions The class REC Tiling recognizability

Representation of unary pictures

Quasi-unary strings Size of quasi-unary strings

Main result

Complexity class for quasi-unary strings Characterization of REC_1

Some details...

Recognizability implies the complexity bound The complexity bound implies recognizability

Basic definitions The class REC Tiling recognizability

Two-dimensional languages

Given a finite alphabet $\Sigma:$

 a (non-empty) picture, or two-dimensional string, is a two-dimensional array of elements of Σ

Basic definitions The class REC Tiling recognizability

Two-dimensional languages

Given a finite alphabet Σ :

- a (non-empty) picture, or two-dimensional string, is a two-dimensional array of elements of Σ
- the set of all pictures over Σ is denoted by Σ^{**}

Basic definitions The class REC Tiling recognizability

Two-dimensional languages

Given a finite alphabet Σ :

- a (non-empty) picture, or two-dimensional string, is a two-dimensional array of elements of Σ
- the set of all pictures over Σ is denoted by Σ^{**}
- ► a two-dimensional language over Σ is any set $L \subseteq \Sigma^{**}$

Basic definitions The class REC Tiling recognizability

Two-dimensional languages

Given a finite alphabet Σ :

- a (non-empty) picture, or two-dimensional string, is a two-dimensional array of elements of Σ
- the set of all pictures over Σ is denoted by Σ^{**}
- ► a two-dimensional language over Σ is any set $L \subseteq \Sigma^{**}$
- the size of a picture p is the pair (r_p, c_p) where
 - r_p = number of rows of p
 - c_p = number of columns of p

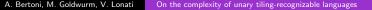
Basic definitions The class REC Tiling recognizability

Two-dimensional languages

Given a finite alphabet Σ :

- a (non-empty) picture, or two-dimensional string, is a two-dimensional array of elements of Σ
- the set of all pictures over Σ is denoted by Σ^{**}
- ► a two-dimensional language over Σ is any set $L \subseteq \Sigma^{**}$
- the size of a picture p is the pair (r_p, c_p) where
 - r_p = number of rows of p
 - c_p = number of columns of p

the border of p is defined as follows



р

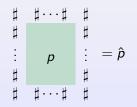
Basic definitions The class REC Tiling recognizability

Two-dimensional languages

Given a finite alphabet Σ :

- a (non-empty) picture, or two-dimensional string, is a two-dimensional array of elements of Σ
- the set of all pictures over Σ is denoted by Σ^{**}
- ► a two-dimensional language over Σ is any set $L \subseteq \Sigma^{**}$
- the size of a picture p is the pair (r_p, c_p) where
 - r_p = number of rows of p
 - c_p = number of columns of p

the border of p is defined as follows



Basic definitions The class REC Tiling recognizability

Operations on two-dimensional languages

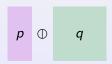
Set operations

Basic definitions The class REC Tiling recognizability

Operations on two-dimensional languages

- Set operations
- Column concatenation

between pictures with the same number of rows



Basic definitions The class REC Tiling recognizability

Operations on two-dimensional languages

Set operations

Column concatenation

between pictures with the same number of rows

$$p \oplus q = p q$$

Basic definitions The class REC Tiling recognizability

Operations on two-dimensional languages

- Set operations
- Column concatenation between pictures with the same number of rows
- Row concatenation

between pictures with the same number of columns

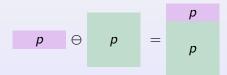
p
$$\ominus$$
 p

Basic definitions The class REC Tiling recognizability

Operations on two-dimensional languages

- Set operations
- Column concatenation between pictures with the same number of rows
- Row concatenation

between pictures with the same number of columns



Basic definitions The class REC Tiling recognizability

Operations on two-dimensional languages

- Set operations
- Column concatenation between pictures with the same number of rows
- Row concatenation

between pictures with the same number of columns

Basic definitions The class REC Tiling recognizability

Operations on two-dimensional languages

- Set operations
- Column concatenation between pictures with the same number of rows
- Row concatenation

between pictures with the same number of columns

Basic definitions The class REC Tiling recognizability

Operations on two-dimensional languages

- Set operations
- Column concatenation between pictures with the same number of rows
- Row concatenation

between pictures with the same number of columns

Basic definitions The class REC Tiling recognizability

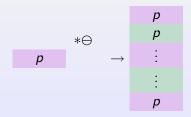
Operations on two-dimensional languages

- Set operations
- Column concatenation

between pictures with the same number of rows

Row concatenation

between pictures with the same number of columns



Basic definitions The class REC Tiling recognizability

Operations on two-dimensional languages

- Set operations
- Column concatenation between pictures with the same number of rows
- Row concatenation

between pictures with the same number of columns

- Column and row closures
- Rotation

Basic definitions The class REC Tiling recognizability

Operations on two-dimensional languages

- Set operations
- Column concatenation between pictures with the same number of rows
- Row concatenation

between pictures with the same number of columns

- Column and row closures
- Rotation

$$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array} \begin{array}{c} R \\ = \\ \downarrow \\ \downarrow \\ \downarrow \end{array}$$

Basic definitions The class REC Tiling recognizabilit

The class Rec

[Giammarresi, Restivo '97 - Handbook of formal languages]

Basic definitions The class REC Tiling recognizabilit

The class Rec

[Giammarresi, Restivo '97 - Handbook of formal languages]

 $\blacktriangleright~\mathrm{REC}$ is a class of two-dimensional languages

Basic definitions The class REC Tiling recognizabilit

The class Rec

[Giammarresi, Restivo '97 - Handbook of formal languages]

- REC is a class of two-dimensional languages
- ▶ REC tries to extends the concept of regular string language

Basic definitions The class REC Tiling recognizability

The class Rec

[Giammarresi, Restivo '97 - Handbook of formal languages]

- REC is a class of two-dimensional languages
- ▶ REC tries to extends the concept of regular string language
- REC can be defined using different approach:
 - regular expressions
 - online tessellation automata
 - logic formulas
 - tiling systems

Basic definitions The class REC Tiling recognizability

Tiling recognizability

A tile is a square picture of size 2. Given any picture p, we write T(p) to denote the set of tiles contained in p.

Basic definitions The class REC Tiling recognizability

- A tile is a square picture of size 2. Given any picture p, we write T(p) to denote the set of tiles contained in p.
- L ⊆ Γ** is a local language if there exists a finite set Θ of tiles such that L = {p ∈ Γ** | T(p̂) ⊆ Θ}. We write L = L(Θ).

Basic definitions The class REC Tiling recognizability

- A tile is a square picture of size 2. Given any picture p, we write T(p) to denote the set of tiles contained in p.
- L ⊆ Γ** is a local language if there exists a finite set Θ of tiles such that L = {p ∈ Γ** | T(p̂) ⊆ Θ}. We write L = L(Θ).
- A tiling system is defined by
 - a projection $\pi: \Gamma \to \Sigma$ between two alphabets
 - a finite set of tiles $\Theta \subseteq (\Gamma \cup \{\sharp\})^{**}$

Basic definitions The class REC Tiling recognizability

- A tile is a square picture of size 2. Given any picture p, we write T(p) to denote the set of tiles contained in p.
- L ⊆ Γ^{**} is a local language if there exists a finite set Θ of tiles such that L = {p ∈ Γ^{**} | T(p̂) ⊆ Θ}. We write L = L(Θ).
- A tiling system is defined by
 - a projection $\pi: \Gamma \to \Sigma$ between two alphabets
 - a finite set of tiles $\Theta \subseteq (\Gamma \cup \{\sharp\})^{**}$
- A language L is in REC if there exists a tiling system such that L = π(L(Θ)).

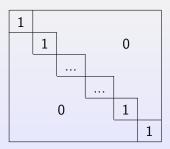
Basic definitions The class REC Tiling recognizability

- A tile is a square picture of size 2. Given any picture p, we write T(p) to denote the set of tiles contained in p.
- L ⊆ Γ** is a local language if there exists a finite set Θ of tiles such that L = {p ∈ Γ** | T(p̂) ⊆ Θ}. We write L = L(Θ).
- A tiling system is defined by
 - a projection $\pi: \Gamma \to \Sigma$ between two alphabets
 - a finite set of tiles $\Theta \subseteq (\Gamma \cup \{\sharp\})^{**}$
- A language L is in REC if there exists a tiling system such that L = π(L(Θ)).
- ▶ REC is closed w.r.t the operations \cup , \oplus , \oplus , $*^{\oplus}$, $*^{\Theta}$, R .

Basic definitions The class REC Tiling recognizability

Example: squares

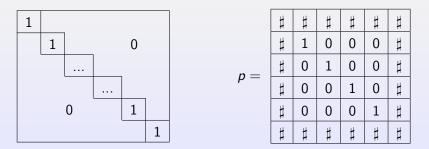
The set of squares with 1 on the main diagonal and 0 in all other position is a local language



Basic definitions The class REC Tiling recognizability

Example: squares

- The set of squares with 1 on the main diagonal and 0 in all other position is a local language
- The set of tiles is given by T(p)

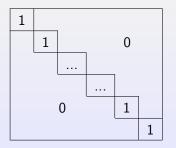


A. Bertoni, M. Goldwurm, V. Lonati On the complexity of unary tiling-recognizable languages

Basic definitions The class REC Tiling recognizability

Example: squares

- The set of squares with 1 on the main diagonal and 0 in all other position is a local language
- The set of tiles is given by T(p)
- The set of unary squares is in REC (it is the projection of the previous languages).



_	#	#	#	#	#	#
	#	1	0	0	0	#
	#	0	1	0	0	#
	##	0	0	1	0	#
	#	0	0	0	1	#
	#	#	#	#	#	#

A. Bertoni, M. Goldwurm, V. Lonati On the complexity of unary tiling-recognizable languages

р

Quasi-unary strings Size of quasi-unary strings

Quasi-unary strings

▶ Unary pictures are pictures over a one-letter alphabet {◦}.

Quasi-unary strings Size of quasi-unary strings

- ▶ Unary pictures are pictures over a one-letter alphabet {○}.
- A unary picture p is identified by its size (r_p, c_p) .

Quasi-unary strings Size of quasi-unary strings

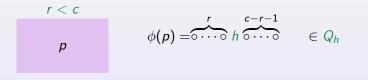
- ▶ Unary pictures are pictures over a one-letter alphabet {○}.
- A unary picture p is identified by its size (r_p, c_p) .
- ► We represent unary pictures by quasi-unary strings over the alphabet {○, h, v}:

Quasi-unary strings Size of quasi-unary strings

- ▶ Unary pictures are pictures over a one-letter alphabet {○}.
- A unary picture p is identified by its size (r_p, c_p) .
- ► We represent unary pictures by quasi-unary strings over the alphabet {○, h, v}:

Quasi-unary strings Size of quasi-unary strings

- ▶ Unary pictures are pictures over a one-letter alphabet {○}.
- A unary picture p is identified by its size (r_p, c_p) .
- ► We represent unary pictures by quasi-unary strings over the alphabet {○, h, v}:



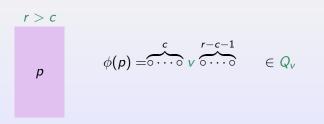
Quasi-unary strings Size of quasi-unary strings

- ▶ Unary pictures are pictures over a one-letter alphabet {○}.
- A unary picture p is identified by its size (r_p, c_p) .
- ► We represent unary pictures by quasi-unary strings over the alphabet {○, h, v}:



Quasi-unary strings Size of quasi-unary strings

- ▶ Unary pictures are pictures over a one-letter alphabet {○}.
- A unary picture p is identified by its size (r_p, c_p) .
- ► We represent unary pictures by quasi-unary strings over the alphabet {○, h, v}:

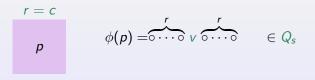


Quasi-unary strings Size of quasi-unary strings

- ▶ Unary pictures are pictures over a one-letter alphabet {○}.
- A unary picture p is identified by its size (r_p, c_p) .
- ► We represent unary pictures by quasi-unary strings over the alphabet {○, h, v}:

Quasi-unary strings Size of quasi-unary strings

- ▶ Unary pictures are pictures over a one-letter alphabet {○}.
- A unary picture p is identified by its size (r_p, c_p) .
- ► We represent unary pictures by quasi-unary strings over the alphabet {○, h, v}:



Quasi-unary strings Size of quasi-unary strings

Size of quasi-unary strings

- Given any quasi-unary string $x \in Q_h \cup Q_v \cup Q_s$:
 - the length of x is denoted by |x|
 - the length of the longest prefix in \circ^* is denoted by $_{\circ}|x|$

Quasi-unary strings Size of quasi-unary strings

Size of quasi-unary strings

• Given any quasi-unary string $x \in Q_h \cup Q_v \cup Q_s$:

- the length of x is denoted by |x|
- the length of the longest prefix in \circ^* is denoted by $_{\circ}|x|$
- ► Given any unary picture p, if φ(p) is the quasi-unary string representing p we have:

 $|\phi(p)| = \max(r_p, c_p)$

Quasi-unary strings Size of quasi-unary strings

Size of quasi-unary strings

- Given any quasi-unary string $x \in Q_h \cup Q_v \cup Q_s$:
 - the length of x is denoted by |x|
 - the length of the longest prefix in \circ^* is denoted by $_{\circ}|x|$
- ► Given any unary picture p, if φ(p) is the quasi-unary string representing p we have:

$$|\phi(p)| = \max(r_p, c_p)$$
 and $|\phi(p)| = \min(r_p, c_p)$

Quasi-unary strings Size of quasi-unary strings

Size of quasi-unary strings

- Given any quasi-unary string $x \in Q_h \cup Q_v \cup Q_s$:
 - the length of x is denoted by |x|
 - the length of the longest prefix in \circ^* is denoted by $_{\circ}|x|$
- ► Given any unary picture p, if φ(p) is the quasi-unary string representing p we have:

$$|\phi(p)| = \max(r_p, c_p)$$
 and $|\phi(p)| = \min(r_p, c_p)$

Ex: $p \qquad \phi(p) = \overbrace{\circ \cdots \circ}^{r} h \overbrace{\circ \cdots \circ}^{c-r-1} \in Q_h$

Complexity class for quasi-unary strings Characterization of Rec_1

The class $N-LINSPACEREV_{QU}$

Complexity class for quasi-unary strings $N-LinSPACEREV_{QU}$ is the class of quasi-unary languages that can be recognized by a Turing machine M

Complexity class for quasi-unary strings Characterization of ReC_1

The class $N-LINSPACEREV_{QU}$

Complexity class for quasi-unary strings N-LINSPACEREV_{QU} is the class of quasi-unary languages that can be recognized by a Turing machine M

- with 1-tape
- nondeterministic

Complexity class for quasi-unary strings $\mbox{Characterization of } \operatorname{Rec}_1$

The class N-LINSPACEREV_{QU}

Complexity class for quasi-unary strings N-LINSPACEREV_{QU} is the class of quasi-unary languages that can be recognized by a Turing machine M

- with 1-tape
- nondeterministic

such that, on every input x,

Complexity class for quasi-unary strings $\mbox{Characterization of } \operatorname{Rec}_1$

The class N-LINSPACEREV_{QU}

Complexity class for quasi-unary strings N-LINSPACEREV_{QU} is the class of quasi-unary languages that can be recognized by a Turing machine M

- with 1-tape
- nondeterministic

such that, on every input x,

- ► M works within |x| space,
- ► M executes o|x| head reversals at most.

Complexity class for quasi-unary strings Characterization of ReC_1

Characterization of Rec_1

Theorem

Given any two-dimensional unary language L, the following statements are equivalents

- L is in Rec_1
- $\phi(L)$ belongs to N-LINSPACEREV_{QU}.

Recognizability implies the complexity bound The complexity bound implies recognizability

Recognizability implies the complexity bound

$L \in \text{Rec} \implies \phi(L) \in \text{N-LinSpaceRev}_{QU}$

Recognizability implies the complexity bound The complexity bound implies recognizability

Recognizability implies the complexity bound

 $L \in \text{Rec} \implies \phi(L) \in \text{N-LinSpaceRev}_{QU}$

Sketch of the proof

• Consider a tiling system for L and let Θ be its set of tiles.

Recognizability implies the complexity bound The complexity bound implies recognizability

Recognizability implies the complexity bound

 $L \in \text{Rec} \implies \phi(L) \in \text{N-LinSpaceRev}_{QU}$

Sketch of the proof

- Consider a tiling system for L and let Θ be its set of tiles.
- $\phi(L)$ corresponds to the problem SIZE REPR (Θ):

Recognizability implies the complexity bound The complexity bound implies recognizability

Recognizability implies the complexity bound

 $L \in \text{Rec} \implies \phi(L) \in \text{N-LinSpaceRev}_{QU}$

Sketch of the proof

- Consider a tiling system for L and let Θ be its set of tiles.
- $\phi(L)$ corresponds to the problem SIZE REPR (Θ):
 - Instance: a quasi-unary string $x \in Q$.
 - Question: does there exist p ∈ L(Θ) whose size is represented by x?

Recognizability implies the complexity bound The complexity bound implies recognizability

Recognizability implies the complexity bound

 $L \in \text{Rec} \implies \phi(L) \in \text{N-LinSpaceRev}_{QU}$

Sketch of the proof

- Consider a tiling system for L and let Θ be its set of tiles.
- $\phi(L)$ corresponds to the problem SIZE REPR (Θ):
 - Instance: a quasi-unary string $x \in Q$.
 - Question: does there exist p ∈ L(Θ) whose size is represented by x?
- ► The problem SIZE REPR (Θ) is in N-LINSPACEREV_{QU} for every finite set Θ of tiles.

Recognizability implies the complexity bound The complexity bound implies recognizability

Recognizability implies the complexity bound

 $L \in \text{Rec} \implies \phi(L) \in \text{N-LinSpaceRev}_{QU}$

Sketch of the proof

- Consider a tiling system for L and let Θ be its set of tiles.
- $\phi(L)$ corresponds to the problem SIZE REPR (Θ):
 - Instance: a quasi-unary string $x \in Q$.
 - ► Question: does there exist p ∈ L(Θ) whose size is represented by x?
- ► The problem SIZE REPR (Θ) is in N-LINSPACEREV_{QU} for every finite set Θ of tiles.

 $\implies \phi(L) \text{ is in N-LINSPACEREV}_{QU}.$

Recognizability implies the complexity bound The complexity bound implies recognizability

The problem SIZE REPRis in N-LINSPACEREV $_{QU}$

The following Turing machine solve the problem SIZE REPR (Θ):

• *M* tries to generate some $p \in \mathcal{L}(\Theta)$ of the required size

Recognizability implies the complexity bound The complexity bound implies recognizability

The problem SIZE REPRis in N-LINSPACEREV $_{QU}$

- *M* tries to generate some $p \in \mathcal{L}(\Theta)$ of the required size
 - first *M* establishes if the input *x* is Q_h , Q_v , or Q_s ;

Recognizability implies the complexity bound The complexity bound implies recognizability

The problem SIZE REPRis in N-LINSPACEREV $_{QU}$

- *M* tries to generate some $p \in \mathcal{L}(\Theta)$ of the required size
 - first *M* establishes if the input *x* is Q_h , Q_v , or Q_s ;
 - if $x \in Q_h$ or $x \in Q_s$, then the generation is performed row by row,

Recognizability implies the complexity bound The complexity bound implies recognizability

The problem SIZE REPRis in N-LINSPACEREV $_{QU}$

- *M* tries to generate some $p \in \mathcal{L}(\Theta)$ of the required size
 - first *M* establishes if the input *x* is Q_h , Q_v , or Q_s ;
 - ▶ if x ∈ Q_h or x ∈ Q_s, then the generation is performed row by row,
 - otherwise the generation has to be done column by column.

Recognizability implies the complexity bound The complexity bound implies recognizability

The problem SIZE REPRis in N-LINSPACEREV $_{QU}$

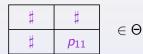
- *M* tries to generate some $p \in \mathcal{L}(\Theta)$ of the required size
 - first *M* establishes if the input *x* is Q_h , Q_v , or Q_s ;
 - ▶ if x ∈ Q_h or x ∈ Q_s, then the generation is performed row by row,
 - otherwise the generation has to be done column by column.
- The input is accepted if and only if such a generating process can be accomplished.

Recognizability implies the complexity bound The complexity bound implies recognizability

0	 0	h	0	 0

Recognizability implies the complexity bound The complexity bound implies recognizability

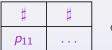
#	 0	h	0	 0
<i>p</i> ₁₁				



Recognizability implies the complexity bound The complexity bound implies recognizability

Tape

#	#	0	h	0	 0
<i>p</i> ₁₁					



 $\in \Theta$

Recognizability implies the complexity bound The complexity bound implies recognizability

#	#	#	h	0	 0
<i>p</i> ₁₁		p_{1m}			

Recognizability implies the complexity bound The complexity bound implies recognizability

#	#	#	#	0	 0
<i>p</i> ₁₁		p_{1m}	p_{1m+1}		

$$\begin{array}{c|c} \sharp & \sharp \\ \hline p_{1m} & p_{1m+1} \end{array} \in \Theta$$

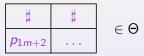
Recognizability implies the complexity bound The complexity bound implies recognizability

#	#	#	#	#	 0
<i>p</i> ₁₁		p_{1m}	p_{1m+1}	p_{1m+2}	

$$\begin{array}{c|c} \sharp & \sharp \\ \hline p_{1m+1} & p_{1m+2} \end{array} \in \Theta$$

Recognizability implies the complexity bound The complexity bound implies recognizability

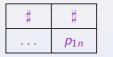
#	#	#	#	#	#	0
<i>p</i> ₁₁		p_{1m}	p_{1m+1}	p_{1m+2}	• • •	



Recognizability implies the complexity bound The complexity bound implies recognizability

Tape

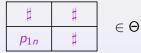
#	#	#	#	#	#	#
<i>p</i> ₁₁		p_{1m}	p_{1m+1}	p_{1m+2}		p_{1n}



 $\in \Theta$

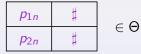
Recognizability implies the complexity bound The complexity bound implies recognizability

#	#	#	#	#	#	#
p_{11}		p_{1m}	p_{1m+1}	p_{1m+2}		p_{1n}



Recognizability implies the complexity bound The complexity bound implies recognizability

#	#	#	#	#	#	<i>p</i> _{1<i>n</i>}
p_{11}	• • •	p_{1m}	p_{1m+1}	p_{1m+2}	• • •	<i>p</i> _{2<i>n</i>}



Recognizability implies the complexity bound The complexity bound implies recognizability

Tape

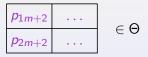
#	#	#	#	#		<i>p</i> _{1<i>n</i>}
<i>p</i> ₁₁		p_{1m}	p_{1m+1}	p_{1m+2}	• • •	<i>p</i> _{2n}

 <i>p</i> _{1<i>n</i>}	
 p 2n	

 $\in \Theta$

Recognizability implies the complexity bound The complexity bound implies recognizability

#	#	#	#	p_{1m+2}	 <i>p</i> _{1<i>n</i>}
<i>p</i> ₁₁		p_{1m}	p_{1m+1}	p_{2m+2}	 <i>p</i> _{2<i>n</i>}



Recognizability implies the complexity bound The complexity bound implies recognizability

#	#	#	p_{1m+1}	p_{1m+2}	 <i>p</i> _{1<i>n</i>}
<i>p</i> ₁₁		p_{1m}	p_{2m+1}	p_{2m+2}	 <i>p</i> _{2<i>n</i>}

$$\begin{array}{c|c} p_{1m+1} & p_{1m+2} \\ \hline p_{2m+1} & p_{2m+2} \end{array} \in \mathsf{G}$$

Recognizability implies the complexity bound The complexity bound implies recognizability

#	#	<i>p</i> _{1<i>m</i>}	p_{1m+1}	p_{1m+2}	 <i>p</i> _{1<i>n</i>}
<i>p</i> ₁₁		<i>p</i> _{2<i>m</i>}	p_{2m+1}	p_{2m+2}	 <i>p</i> _{2<i>n</i>}

$$\begin{array}{c|c} p_{1m} & p_{1m+1} \\ \hline p_{2m} & p_{2m+1} \end{array} \in \Theta$$

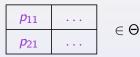
Recognizability implies the complexity bound The complexity bound implies recognizability

#	 <i>p</i> _{1<i>m</i>}	p_{1m+1}	p_{1m+2}	 <i>p</i> _{1<i>n</i>}
<i>p</i> ₁₁	 <i>p</i> _{2<i>m</i>}	p_{2m+1}	p_{2m+2}	 <i>p</i> _{2<i>n</i>}

$$\begin{array}{c|c} \dots & p_{1m} \\ \hline \dots & p_{2m} \end{array} \in \Theta$$

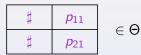
Recognizability implies the complexity bound The complexity bound implies recognizability

<i>p</i> ₁₁	 <i>p</i> _{1<i>m</i>}	p_{1m+1}	p_{1m+2}	 <i>p</i> _{1<i>n</i>}
<i>p</i> ₂₁	 p_{2m}	p_{2m+1}	p_{2m+2}	 <i>p</i> _{2<i>n</i>}



Recognizability implies the complexity bound The complexity bound implies recognizability

<i>p</i> ₁₁	 <i>p</i> _{1<i>m</i>}	p_{1m+1}	p_{1m+2}	 <i>p</i> _{1<i>n</i>}
<i>p</i> ₂₁	 <i>p</i> _{2<i>m</i>}	p_{2m+1}	p_{2m+2}	 <i>p</i> _{2<i>n</i>}



Recognizability implies the complexity bound The complexity bound implies recognizability

The complexity bound implies recognizability

For any unary two-dimensional language L

$$\phi(L) \in \text{N-LinSpaceRev}_{QU} \implies L \in \text{Rec}$$

Recognizability implies the complexity bound The complexity bound implies recognizability

The complexity bound implies recognizability

For any unary two-dimensional language L

 $\phi(L) \in \text{N-LINSPACEREV}_{QU} \implies L \in \text{Rec}$

Recognizability implies the complexity bound The complexity bound implies recognizability

The complexity bound implies recognizability

For any unary two-dimensional language L

$$\phi(L) \in \text{N-LINSPACEREV}_{QU} \implies L \in \text{Rec}$$

- We introduce some two-dimensional languages
 - ▶ the accepting-computation language of the Turing machine accepting $\phi(L)$ ▶

Recognizability implies the complexity bound The complexity bound implies recognizability

The complexity bound implies recognizability

For any unary two-dimensional language L

 $\phi(L) \in \text{N-LINSPACEREV}_{QU} \implies L \in \text{Rec}$

- We introduce some two-dimensional languages
 - ▶ the accepting-computation language of the Turing machine accepting $\phi(L)$ ▶
 - the mask languages for squares and for horizontal and vertical rectangles

Recognizability implies the complexity bound The complexity bound implies recognizability

The complexity bound implies recognizability

For any unary two-dimensional language L

 $\phi(L) \in \text{N-LINSPACEREV}_{QU} \implies L \in \text{Rec}$

- We introduce some two-dimensional languages
 - ► the accepting-computation language of the Turing machine accepting $\phi(L)$ •
 - the mask languages for squares and for horizontal and vertical rectangles
- ► We overlap them to obtain a tiling-recognizable language that is projected onto L

Recognizability implies the complexity bound The complexity bound implies recognizability

The complexity bound implies recognizability

For any unary two-dimensional language L

 $\phi(L) \in \text{N-LINSPACEREV}_{QU} \implies L \in \text{Rec}$

Sketch of the proof

- We introduce some two-dimensional languages
 - ► the accepting-computation language of the Turing machine accepting $\phi(L)$ •
 - the mask languages for squares and for horizontal and vertical rectangles
- ► We overlap them to obtain a tiling-recognizable language that is projected onto L ▷ ⇒ L is tiling-recognizable

End of the proof

Recognizability implies the complexity bound The complexity bound implies recognizability

Accepting computations of a Turing machine

Given any 1-tape nondeterministic Turing machine M:

Recognizability implies the complexity bound The complexity bound implies recognizability

Accepting computations of a Turing machine

Given any 1-tape nondeterministic Turing machine *M*:

► a configuration of M is a string $C = x \sigma_q y$ where $x, y \in \Lambda^*$ and $\sigma_q \in \Lambda_q$ (Λ is the working alphabet)

Recognizability implies the complexity bound The complexity bound implies recognizability

Accepting computations of a Turing machine

Given any 1-tape nondeterministic Turing machine M:

- ► a configuration of *M* is a string $C = x \sigma_q y$ where $x, y \in \Lambda^*$ and $\sigma_q \in \Lambda_q$ (Λ is the working alphabet)
- ► Given two configuration C and D we write C ▷ D whenever we can go from C to D without head reversals

Accepting computations of a Turing machine

Given any 1-tape nondeterministic Turing machine *M*:

- ► a configuration of M is a string $C = x \sigma_q y$ where $x, y \in \Lambda^*$ and $\sigma_q \in \Lambda_q$ (Λ is the working alphabet)
- ► Given two configuration C and D we write C ▷ D whenever we can go from C to D without head reversals
- An accepting computation is a sequence

 $W_1 \triangleright W_2 \triangleright \cdots \triangleright W_n$

where

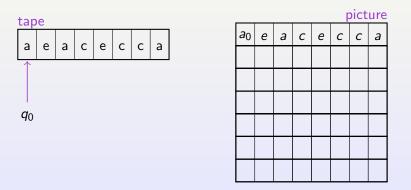
- ▶ *W*₁ is an initial configuration
- ► *W_n* is an accepting configuration
- at W_i there is a head reversal at W_i

Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation <->

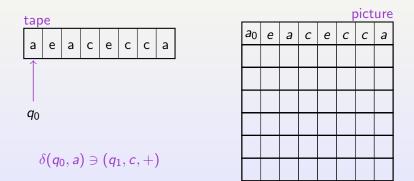
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



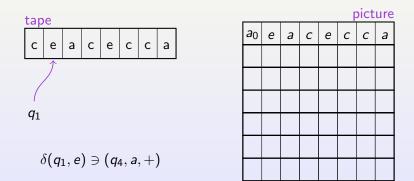
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



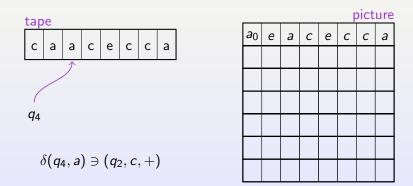
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



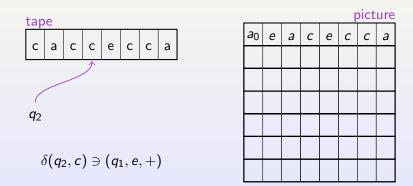
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



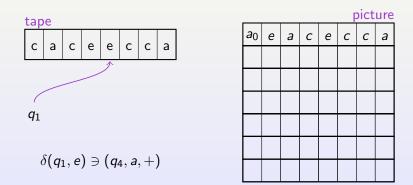
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



Recognizability implies the complexity bound The complexity bound implies recognizability

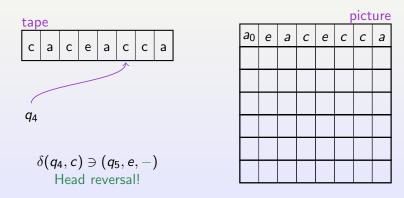
Picture associated with an accepting-computation



Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation

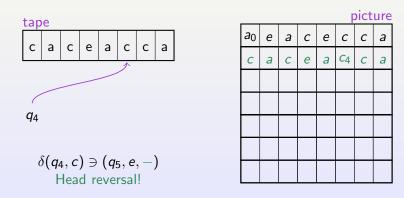
Given any accepting computation $W_1 \triangleright W_2 \triangleright \cdots \triangleright W_n$ on input w, let $m = \max |W_i|$ and consider the picture of size $n \times m$ containing W_i on the *i*-th row



A. Bertoni, M. Goldwurm, V. Lonati On the complexity of unary tiling-recognizable languages

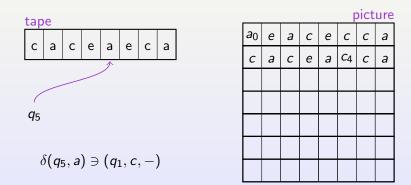
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



Recognizability implies the complexity bound The complexity bound implies recognizability

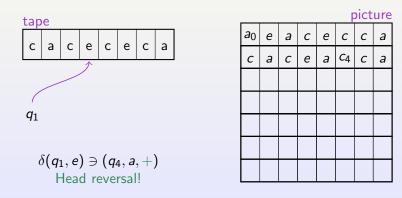
Picture associated with an accepting-computation



Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation

Given any accepting computation $W_1 \triangleright W_2 \triangleright \cdots \triangleright W_n$ on input w, let $m = \max |W_i|$ and consider the picture of size $n \times m$ containing W_i on the *i*-th row

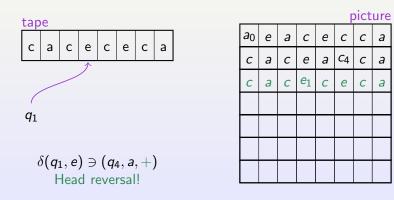


A. Bertoni, M. Goldwurm, V. Lonati On the complexity of unary tiling-recognizable languages

Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation

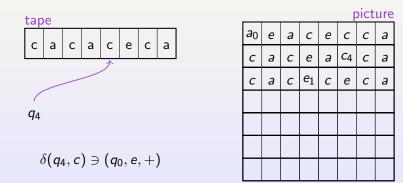
Given any accepting computation $W_1 \triangleright W_2 \triangleright \cdots \triangleright W_n$ on input w, let $m = \max |W_i|$ and consider the picture of size $n \times m$ containing W_i on the *i*-th row



A. Bertoni, M. Goldwurm, V. Lonati On the complexity of unary tiling-recognizable languages

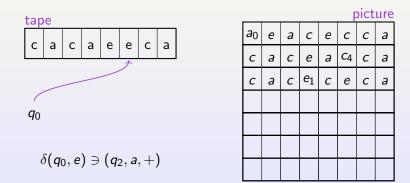
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



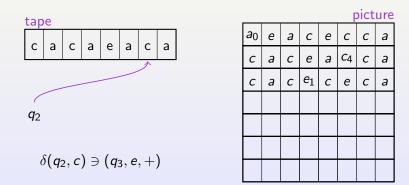
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



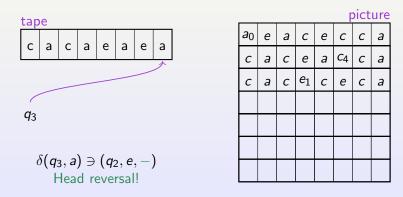
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



Recognizability implies the complexity bound The complexity bound implies recognizability

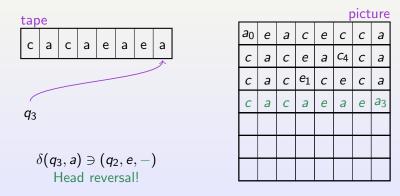
Picture associated with an accepting-computation



Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation

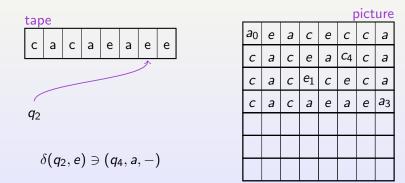
Given any accepting computation $W_1 \triangleright W_2 \triangleright \cdots \triangleright W_n$ on input w, let $m = \max |W_i|$ and consider the picture of size $n \times m$ containing W_i on the *i*-th row



A. Bertoni, M. Goldwurm, V. Lonati On the complexity of unary tiling-recognizable languages

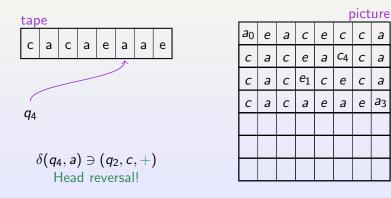
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



Recognizability implies the complexity bound The complexity bound implies recognizability

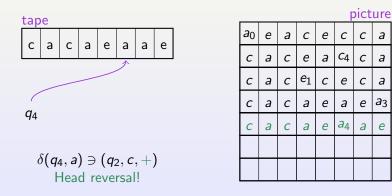
Picture associated with an accepting-computation



A. Bertoni, M. Goldwurm, V. Lonati On the complexity of unary tiling-recognizable languages

Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation

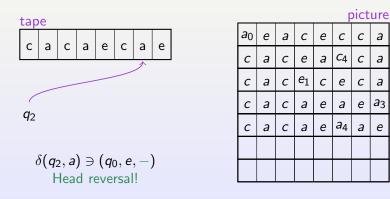


A. Bertoni, M. Goldwurm, V. Lonati On the complexity of unary tiling-recognizable languages

Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation

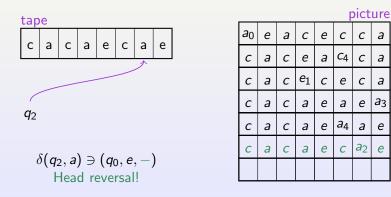
Given any accepting computation $W_1 \triangleright W_2 \triangleright \cdots \triangleright W_n$ on input w, let $m = \max |W_i|$ and consider the picture of size $n \times m$ containing W_i on the *i*-th row



A. Bertoni, M. Goldwurm, V. Lonati On the complexity of unary tiling-recognizable languages

Recognizability implies the complexity bound The complexity bound implies recognizability

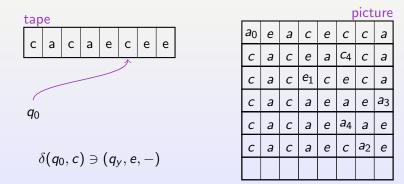
Picture associated with an accepting-computation



A. Bertoni, M. Goldwurm, V. Lonati On the complexity of unary tiling-recognizable languages

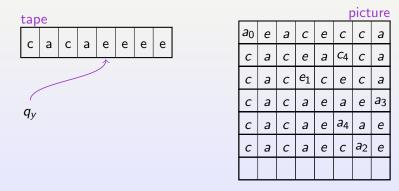
Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation



Recognizability implies the complexity bound The complexity bound implies recognizability

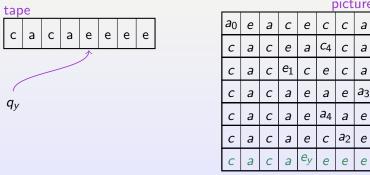
Picture associated with an accepting-computation



The complexity bound implies recognizability

Picture associated with an accepting-computation •

Given any accepting computation $W_1 \triangleright W_2 \triangleright \cdots \triangleright W_n$ on input w, let $m = \max |W_i|$ and consider the picture of size $n \times m$ containing W_i on the *i*-th row



picture

Recognizability implies the complexity bound The complexity bound implies recognizability

Picture associated with an accepting-computation

picture

_							
<i>a</i> 0	е	а	с	е	с	с	а
с	а	с	е	а	С4	с	а
с	а	с	e_1	с	е	с	а
с	а	с	а	е	а	е	a ₃
с	а	с	а	е	a ₄	а	е
с	а	с	а	е	с	a 2	е
с	а	с	а	ey	е	е	е

Recognizability implies the complexity bound The complexity bound implies recognizability

Accepting-computation language

The accepting-computation language of M is defined as the set A(M) of all pictures corresponding to any accepting computation of M.

Recognizability implies the complexity bound The complexity bound implies recognizability

Accepting-computation language

The accepting-computation language of M is defined as the set A(M) of all pictures corresponding to any accepting computation of M.

Proposition

The accepting-computation language of a Turing machine is in $\ensuremath{\mathrm{REC}}$

Recognizability implies the complexity bound The complexity bound implies recognizability

Accepting-computation language

The accepting-computation language of M is defined as the set A(M) of all pictures corresponding to any accepting computation of M.

Proposition

The accepting-computation language of a Turing machine is in $\ensuremath{\mathrm{Rec}}$

<i>a</i> 0	е	а	с	е	с	с	а
с	а	с	е	а	С4	с	а
с	а	с	e_1	с	е	с	а
с	а	с	а	е	а	е	a ₃
с	а	с	а	е	<i>a</i> 4	а	е
с	а	с	а	е	с	a ₂	е
с	а	с	а	e_y	е	е	е

Recognizability implies the complexity bound The complexity bound implies recognizability

Accepting-computation language

The accepting-computation language of M is defined as the set A(M) of all pictures corresponding to any accepting computation of M.

Proposition

The accepting-computation language of a Turing machine is in $\ensuremath{\mathrm{Rec}}$

$\overrightarrow{a_0}$	е	а	с	е	с	с	а
с	а	с	е	а	$\overleftarrow{c_4}$	с	а
с	а	с	$\overrightarrow{e_1}$	с	е	с	а
с	а	с	а	е	а	е	$\overleftarrow{a_3}$
с	а	с	а	е	$\overrightarrow{a_4}$	а	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	е	е	е

Recognizability implies the complexity bound The complexity bound implies recognizability

Accepting-computation language

The accepting-computation language of M is defined as the set A(M) of all pictures corresponding to any accepting computation of M.

Proposition

The accepting-computation language of a Turing machine is in $\ensuremath{\mathrm{Rec}}$

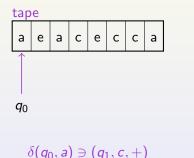
$\overrightarrow{a_0}$	е	а	с	е	с	с	а
с	а	С	е	а	$\overleftarrow{c_4}$	с	а
с	а	с	$\overrightarrow{e_1}$	с	е	с	а
с	а	с	а	е	а	а	a ₃
с	а	с	а	е	$\overrightarrow{a_4}$	а	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	е	е	е

Recognizability implies the complexity bound The complexity bound implies recognizability

 a_0

e a c e

The accepting-computation language is in Rec ${\bullet}$



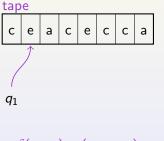
с	а	С	е	а	$\overleftarrow{c_4}$	с	а
с	а	с	$\overrightarrow{e_1}$	с	е	с	а
с	а	с	а	е	а	а	$\overleftarrow{a_3}$
с	а	с	а	е	$\overrightarrow{a_4}$	а	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	е	е	е

С

ca

Recognizability implies the complexity bound The complexity bound implies recognizability

The accepting-computation language is in Rec \bigcirc



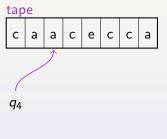
с	^{1}a	С	е	а	$\overleftarrow{c_4}$	с	а
с	а	с	$\overrightarrow{e_1}$	с	е	с	а
с	а	с	а	е	а	а	$\overleftarrow{a_3}$
с	а	с	а	е	$\overrightarrow{a_4}$	а	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	е	е	е

ao e a c e c c a

$\delta(q_1, e) \ni (q_4, a, +)$

Recognizability implies the complexity bound The complexity bound implies recognizability

The accepting-computation language is in Rec \bigcirc



 $\delta(q_4, a) \ni (q_2, c, +)$

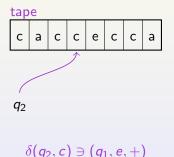
$\overrightarrow{a_0}$	е	а	с	е	с	с	а
с	^{1}a	⁴ <i>c</i>	е	а	$\overleftarrow{c_4}$	с	а
с	а	с	$\overrightarrow{e_1}$	с	е	с	а
с	а	с	а	е	а	а	, a3
с	а	с	а	е	$\overrightarrow{a_4}$	а	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	е	е	е

Recognizability implies the complexity bound The complexity bound implies recognizability

an

e a c e

The accepting-computation language is in Rec \bigcirc



С	¹ a	⁴ C	2e	а	C ₄	С	а
с	а	с	$\overrightarrow{e_1}$	с	е	с	а
с	а	с	а	е	а	а	$\overleftarrow{a_3}$
с	а	с	а	е	$\overrightarrow{a_4}$	а	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	е	е	е

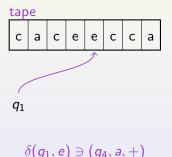
С

cla

Recognizability implies the complexity bound The complexity bound implies recognizability

 $a_0 \mid e \mid a \mid c \mid e \mid c \mid c \mid a$

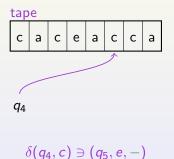
The accepting-computation language is in Rec \bigcirc



с	^{1}a	⁴ c	² e	^{1}a	$\overleftarrow{c_4}$	с	а
с	а	с	$\overrightarrow{e_1}$	с	е	с	а
с	а	с	а	е	а	а	$\overleftarrow{a_3}$
с	а	с	а	е	$\overrightarrow{a_4}$	а	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	е	е	е

Recognizability implies the complexity bound The complexity bound implies recognizability

The accepting-computation language is in Rec \bigcirc



$\overrightarrow{a_0}$	е	а	с	е	с	с	а
с	¹ a	⁴ c	² e	^{1}a	$\overleftarrow{c_4}$	с	а
с	а	с	$\overrightarrow{e_1}$	с	е	с	а
с	а	с	а	е	а	а	á3
с	а	с	а	е	$\overrightarrow{a_4}$	а	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	е	е	е

Recognizability implies the complexity bound The complexity bound implies recognizability

The accepting-computation language is in Rec \bigcirc

$\overrightarrow{a_0}$	е	а	с	е	с	с	а
с	¹ a	⁴ c	² e	^{1}a	$\overleftarrow{c_4}$	с	а
с	а	с	$\overrightarrow{e_1}$	⁵ c	е	с	а
с	а	с	а	⁴ e	⁰ a	² e	á3
с	а	с	а	е	$\overrightarrow{a_4}$	² a	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	⁰ e	е	е

Recognizability implies the complexity bound The complexity bound implies recognizability

The accepting-computation language is in Rec \bigcirc

The marked picture can be described locally!

$\overrightarrow{a_0}$	е	а	с	е	с	с	а
с	^{1}a	⁴ c	² e	^{1}a	$\overleftarrow{c_4}$	с	а
с	а	с	$\overrightarrow{e_1}$	⁵ c	е	с	а
с	а	с	а	⁴ e	⁰ a	² e	, a3
с	а	с	а	е	$\overrightarrow{a_4}$	² a	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	⁰ e	е	е

Recognizability implies the complexity bound The complexity bound implies recognizability

The accepting-computation language is in REC \bigcirc

The marked picture can be described locally!

Hence the accepting-computation language is in REC

$\overrightarrow{a_0}$	е	а	с	е	с	с	а
с	¹ a	⁴ c	² e	^{1}a	$\overleftarrow{c_4}$	с	а
с	а	с	$\overrightarrow{e_1}$			с	а
с	а	с	а	⁴ e	⁰ a	² e	, a3
с	а	с	а	е	$\overrightarrow{a_4}$	² a	е
с	а	с	а	е	с	$\overleftarrow{a_2}$	е
с	а	с	а	$\overrightarrow{e_y}$	⁰ e	е	е

Recognizability implies the complexity bound The complexity bound implies recognizability

Overlap of languages

	<i>p</i> ₁₁	•••	p_{1m}
	<i>p</i> ₂₁	•••	p 2m
p =	:		:
	<i>p</i> _{<i>n</i>1}	•••	p _{nm}

	q_{11}	• • •	q_{1m}
	q_{21}	• • •	q _{2m}
q =	•••		:
	q_{n1}	• • •	q _{nm}

Recognizability implies the complexity bound The complexity bound implies recognizability

Overlap of languages <

$p = \begin{array}{|c|c|c|c|c|c|c|c|} \hline p_{11} & \cdots & p_{1m} \\ \hline p_{21} & \cdots & p_{2m} \\ \hline \vdots & \cdots & \vdots \\ \hline p_{n1} & \cdots & p_{nm} \end{array}$

(p_{11}, q_{11})	•••	(p_{1m}, q_{1m})
(p_{21}, q_{21})	•••	(p_{2m}, q_{2m})

. . .

. . .

.

.

 (p_{nm}, q_{nm})

Product $p \times q$

	q_{11}	•••	q_{1m}
	q_{21}	• • •	q _{2m}
q =	÷		÷
	q_{n1}	• • •	q _{nm}

 (p_{n1}, q_{n1})

Recognizability implies the complexity bound The complexity bound implies recognizability

Overlap of languages

$p = \begin{bmatrix} p_{11} & \cdots & p_{1m} \\ p_{21} & \cdots & p_{2m} \\ \vdots & \cdots & \vdots \\ p_{n1} & \cdots & p_{nm} \end{bmatrix}$

	q_{11}	• • •	q_{1m}
	q_{21}	• • •	q_{2m}
q =	:		÷
	q_{n1}	• • •	q _{nm}

Product $p \times q$

(p_{11}, q_{11})	•••	(p_{1m},q_{1m})
(p_{21}, q_{21})	•••	(p_{2m}, q_{2m})
÷		:
(p_{n1}, q_{n1})		(p_{nm},q_{nm})

 $L_1 \diamond L_2$ is defined as the set of pictures $p_1 \times p_2$, $p_i \in L_i$, such that

- p₁ and p₂ have the same size
- the first row of p₁ equals the first row of p₂

Recognizability implies the complexity bound The complexity bound implies recognizability

$\phi(L) \in \text{N-LINSPACEREV}_{QU} \Longrightarrow L \in \text{Rec}$

• Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$

Recognizability implies the complexity bound The complexity bound implies recognizability

- ► Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- ▶ Let A be the accepting-computation language associated with the Turing machine that accept φ(L)

Recognizability implies the complexity bound The complexity bound implies recognizability

- ► Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- ▶ Let A be the accepting-computation language associated with the Turing machine that accept φ(L)
- Add paddings to tune the sizes

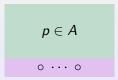
Recognizability implies the complexity bound The complexity bound implies recognizability

- ► Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- ▶ Let A be the accepting-computation language associated with the Turing machine that accept φ(L)
- Add paddings to tune the sizes

$$p\in A$$

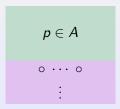
Recognizability implies the complexity bound The complexity bound implies recognizability

- ► Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- ▶ Let A be the accepting-computation language associated with the Turing machine that accept φ(L)
- Add paddings to tune the sizes



Recognizability implies the complexity bound The complexity bound implies recognizability

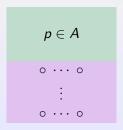
- ► Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- ▶ Let A be the accepting-computation language associated with the Turing machine that accept φ(L)
- Add paddings to tune the sizes



Recognizability implies the complexity bound The complexity bound implies recognizability

$\phi(L) \in \text{N-LINSPACEREV}_{QU} \Longrightarrow L \in \text{Rec}$

- Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- ▶ Let A be the accepting-computation language associated with the Turing machine that accept φ(L)
- ▶ Add paddings to tune the sizes, obtaining $A' = A \ominus \circ^{**}$



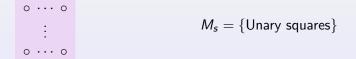
 $A' = A \ominus \circ^{**}$

Recognizability implies the complexity bound The complexity bound implies recognizability

- ▶ Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- Let A be the accepting-computation language associated with the Turing machine that accept \u03c6(L)
- Add paddings to tune the sizes, obtaining $A' = A \ominus \circ^{**}$
- Consider the mask languages

Recognizability implies the complexity bound The complexity bound implies recognizability

- Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- Let A be the accepting-computation language associated with the Turing machine that accept \u03c6(L)
- ▶ Add paddings to tune the sizes, obtaining $A' = A \ominus \circ^{**}$
- Consider the mask languages M_s



Recognizability implies the complexity bound The complexity bound implies recognizability

- Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- Let A be the accepting-computation language associated with the Turing machine that accept \u03c6(L)
- ▶ Add paddings to tune the sizes, obtaining $A' = A \ominus \circ^{**}$
- Consider the mask languages M_s, M_h

0 0	h	0 0
÷	h	÷
0 0	h	0 0

$$M_h = M_s \oplus h^{*\ominus} \oplus \circ^{**}$$

Recognizability implies the complexity bound The complexity bound implies recognizability

- Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- Let A be the accepting-computation language associated with the Turing machine that accept \u03c6(L)
- ▶ Add paddings to tune the sizes, obtaining $A' = A \ominus \circ^{**}$
- Consider the mask languages M_s , M_h and M_v

0 0	V	0 0
÷	V	÷
0 0	V	0 0

$$M_v = M_s \oplus v^{*\ominus} \oplus \circ^{**}$$

Recognizability implies the complexity bound The complexity bound implies recognizability

$\phi(L) \in \text{N-LINSPACEREV}_{QU} \Longrightarrow L \in \text{Rec}$

- ▶ Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- Let A be the accepting-computation language associated with the Turing machine that accept \u03c6(L)
- ▶ Add paddings to tune the sizes, obtaining $A' = A \ominus \circ^{**}$
- Consider the mask languages M_s , M_h and M_v

Set $L' = (A' \diamond M_s) \cup (A' \diamond M_h) \cup (A' \diamond M_v)^R$

Recognizability implies the complexity bound The complexity bound implies recognizability

$\phi(L) \in \text{N-LINSPACEREV}_{QU} \Longrightarrow L \in \text{Rec}$

- ▶ Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- Let A be the accepting-computation language associated with the Turing machine that accept \u03c6(L)
- ▶ Add paddings to tune the sizes, obtaining $A' = A \ominus \circ^{**}$
- Consider the mask languages M_s , M_h and M_v

Set $L' = (A' \diamond M_s) \cup (A' \diamond M_h) \cup (A' \diamond M_v)^R$

Then $\pi(L') = L$, where π is the morphism that maps all symbols onto \circ .

Recognizability implies the complexity bound The complexity bound implies recognizability

$\phi(L) \in \text{N-LINSPACEREV}_{QU} \Longrightarrow L \in \text{Rec}$

- ▶ Assume $\phi(L) \in \text{N-LINSPACEREV}_{QU}$
- Let A be the accepting-computation language associated with the Turing machine that accept \u03c6(L)
- ▶ Add paddings to tune the sizes, obtaining $A' = A \ominus \circ^{**}$
- Consider the mask languages M_s , M_h and M_v

Set $L' = (A' \diamond M_s) \cup (A' \diamond M_h) \cup (A' \diamond M_v)^R$

Then $\pi(L') = L$, where π is the morphism that maps all symbols onto \circ .

 \implies *L* is in Rec

Recognizability implies the complexity bound The complexity bound implies recognizability

Two dimensional tiling-recognizable pictures

Recognizability implies the complexity bound The complexity bound implies recognizability

Summary

- Two dimensional tiling-recognizable pictures
- Representation of two-dimensional unary pictures by quasi-unary strings

Recognizability implies the complexity bound The complexity bound implies recognizability

Summary

- Two dimensional tiling-recognizable pictures
- Representation of two-dimensional unary pictures by quasi-unary strings
- Complexity class for quasi-unary languages: space and number of head reversals bounded.

Recognizability implies the complexity bound The complexity bound implies recognizability

Summary

- Two dimensional tiling-recognizable pictures
- Representation of two-dimensional unary pictures by quasi-unary strings
- Complexity class for quasi-unary languages: space and number of head reversals bounded.
- Characterization of two-dimensional unary languages in terms of complexity of the corresponding quasi-unary languages