Entropia di sistemi di informazione incompleti

Gianpiero Cattaneo, Davide Ciucci, Daniela Bianucci

Dipartimento di Informatica, Sistemistica e Comunicazione Università di Milano Bicocca

17 luglio 2006/ Varese

IS: example

Flat	Price	Rooms	Down-Town	Furniture
f_1	high	2	yes	no
f_2	high	1	yes	no
f_3	high	2	yes	no
f_4	low	1	no	no
<i>f</i> ₅	low	1	no	no
<i>f</i> ₆	medium	1	yes	yes

Definition

An Information System (IS) is a structure $\mathcal{K}(X) = \langle X, Att, val, F \rangle$ where

• the universe X is a non empty set of objects

Definition

An Information System (IS) is a structure $\mathcal{K}(X) = \langle X, Att, val, F \rangle$ where

- the universe X is a non empty set of objects
- Att is a non empty set of attributes

Definition

An Information System (IS) is a structure $\mathcal{K}(X) = \langle X, Att, val, F \rangle$ where

- the universe X is a non empty set of objects
- Att is a non empty set of attributes
- val is the set of all possible values that can be observed for an attribute a from Att

Definition

An Information System (IS) is a structure $\mathcal{K}(X) = \langle X, Att, val, F \rangle$ where

- the universe X is a non empty set of objects
- Att is a non empty set of attributes
- val is the set of all possible values that can be observed for an attribute a from Att
- F (called the information map) is a function

$$F: X \times Att \rightarrow val$$

which associates to any pair $x \in X$ and $a \in Att$ the value $F(x, a) \in val$ assumed by the attribute a for the object x

Definition (Indiscernibilità)

Dato un insieme di attributi $A \in Att$

Definition (Indiscernibilità)

Dato un insieme di attributi $A \in Att$ due oggetti $x, y \in U$ sono detti indiscernibili rispetto a A se

Definition (Indiscernibilità)

Dato un insieme di attributi $A \in Att$ due oggetti $x, y \in U$ sono detti indiscernibili rispetto a A se

$$\forall a \in A \quad F(a, x) = F(a, y)$$

In questo caso scriviamo xI_Ay

Definition (Indiscernibilità)

Dato un insieme di attributi $A \in Att$ due oggetti $x, y \in U$ sono detti indiscernibili rispetto a A se

$$\forall a \in A \quad F(a, x) = F(a, y)$$

In questo caso scriviamo xI_Ay

 I_A è una relazione di equivalenza che partiziona U in classi di equivalenza

$$C_A(x) := \{ y \in U : xI_Ay \}$$

Paziente	Pressione	Mal di Testa	Temperatura	Dolori Muscolari
P1	Normale	si	38–39	si
P2	Alta	no	36–37	si
P3	Alta	no	36-37	si
P4	Bassa	si	35–36	no
P5	Normale	si	36–37	si

Paziente	Pressione	Mal di Testa	Temperatura	Dolori Muscolari
P1	Normale	si	38–39	si
P2	Alta	no	36–37	si
P3	Alta	no	36-37	si
P4	Bassa	si	35–36	no
P5	Normale	si	36–37	si

Paziente	Pressione	Mal di Testa	Temperatura	Dolori Muscolari
P1	Normale	si	38–39	si
P2	Alta	no	36–37	si
P3	Alta	no	36-37	si
P4	Bassa	si	35–36	no
P5	Normale	si	36–37	si

Paziente	Pressione	Mal di Testa	Temperatura	Dolori Muscolari
P1	Normale	si	38–39	si
P2	Alta	no	36–37	si
P3	Alta	no	36-37	si
P4	Bassa	si	35–36	no
P5	Normale	si	36–37	si

Le classi di equivalenza C_i sono {P1}, {P2,P3}, {P4}, {P5}

A insieme di attributi

A insieme di attributi

 C_i classe di equivalenza: rappresenta l'"evento" di osservare una determinata tupla di valori

A insieme di attributi

 C_i classe di equivalenza: rappresenta l'"evento" di osservare una determinata tupla di valori

Probabilità dell'evento C_i : $p(C_i) = \frac{|C_i|}{|X|}$

A insieme di attributi

 C_i classe di equivalenza: rappresenta l'"evento" di osservare una determinata tupla di valori

Probabilità dell'evento C_i : $p(C_i) = \frac{|C_i|}{|X|}$

Definition

$$H(A) = -\sum_{i=1}^{n} \frac{|C_i|}{|X|} \log_2 \frac{|C_i|}{|X|}$$

A insieme di attributi

 C_i classe di equivalenza: rappresenta l'"evento" di osservare una determinata tupla di valori

Probabilità dell'evento C_i : $p(C_i) = \frac{|C_i|}{|X|}$

Definition

$$H(A) = -\sum_{i=1}^{n} \frac{|C_i|}{|X|} \log_2 \frac{|C_i|}{|X|} = \log_2 |X| - \frac{1}{|X|} \sum_{i=1}^{n} |C_i| \log_2 |C_i|$$

A insieme di attributi

 C_i classe di equivalenza: rappresenta l'"evento" di osservare una determinata tupla di valori

Probabilità dell'evento C_i : $p(C_i) = \frac{|C_i|}{|X|}$

Definition

$$H(A) = -\sum_{i=1}^{n} \frac{|C_i|}{|X|} \log_2 \frac{|C_i|}{|X|} = \log_2 |X| - \frac{1}{|X|} \sum_{i=1}^{n} |C_i| \log_2 |C_i|$$

co-entropia
$$E(A) = \frac{1}{|X|} \sum_{i=1}^{n} |C_i| \log_2 |C_i|$$

A insieme di attributi

 C_i classe di equivalenza: rappresenta l'"evento" di osservare una determinata tupla di valori

Probabilità dell'evento C_i : $p(C_i) = \frac{|C_i|}{|X|}$

Definition

$$H(A) = -\sum_{i=1}^{n} \frac{|C_i|}{|X|} \log_2 \frac{|C_i|}{|X|} = \log_2 |X| - \frac{1}{|X|} \sum_{i=1}^{n} |C_i| \log_2 |C_i|$$

co-entropia
$$E(A) = \frac{1}{|X|} \sum_{i=1}^{n} |C_i| \log_2 |C_i|$$

$$H(A) + E(A) = \log_2(|X|)$$

Partizione discreta: $\pi_d = \{\{x_1\}, \{x_2\}, \dots, \{x_n\}\}$

Partizione discreta:
$$\pi_d = \{\{x_1\}, \{x_2\}, \dots, \{x_n\}\}$$

$$H(\pi_d) = \log |X| \quad E(\pi_d) = 0$$

Partizione discreta:
$$\pi_d = \{\{x_1\}, \{x_2\}, \dots, \{x_n\}\}$$

$$H(\pi_d) = \log |X| \quad E(\pi_d) = 0$$

Partizione banale: $\pi_t = \{X\}$

Partizione discreta:
$$\pi_d = \{\{x_1\}, \{x_2\}, ..., \{x_n\}\}$$

$$H(\pi_d) = \log |X| \quad E(\pi_d) = 0$$

Partizione banale: $\pi_t = \{X\}$

$$H(\pi_t) = 0$$
 $E(\pi_d) = \log |X|$

Partizione discreta:
$$\pi_d = \{\{x_1\}, \{x_2\}, ..., \{x_n\}\}$$

$$H(\pi_d) = \log |X| \quad E(\pi_d) = 0$$

Partizione banale: $\pi_t = \{X\}$

$$H(\pi_t) = 0$$
 $E(\pi_d) = \log |X|$

Data una generica partizione π

Partizione discreta: $\pi_d = \{\{x_1\}, \{x_2\}, \dots, \{x_n\}\}$

$$H(\pi_d) = \log |X| \quad E(\pi_d) = 0$$

Partizione banale: $\pi_t = \{X\}$

$$H(\pi_t) = 0$$
 $E(\pi_d) = \log |X|$

Data una generica partizione π

$$0 = H(\pi_t) \le H(\pi) \le H(\pi_d) = \log |X|$$

Sull'insieme di tutte le partizioni $\Pi(X)$ di un universo X è possibile definire una relazione d'ordine

$$\pi_1 \leq \pi_2$$
 iff $\forall C_i \in \pi_1, \ \exists D_j \in \pi_2 : C_i \subseteq D_j$

8 / 23

Sull'insieme di tutte le partizioni $\Pi(X)$ di un universo X è possibile definire una relazione d'ordine

$$\pi_1 \leq \pi_2$$
 iff $\forall C_i \in \pi_1, \exists D_i \in \pi_2 : C_i \subseteq D_i$

$$\pi_1 \ll \pi_2$$
 iff $\forall D_j \in \pi_2, \ \exists \{C_{i_1}, C_{i_2}, \dots, C_{i_p}\} \subseteq \pi_2 : D_j = C_{i_1} \cup C_{i_2} \cup \dots \cup C_{i_p}$

Sull'insieme di tutte le partizioni $\Pi(X)$ di un universo X è possibile definire una relazione d'ordine

$$\pi_1 \preceq \pi_2$$
 iff $\forall C_i \in \pi_1, \ \exists D_j \in \pi_2 : C_i \subseteq D_j$

$$\pi_1 \ll \pi_2$$
 iff $\forall D_j \in \pi_2, \ \exists \{C_{i_1}, C_{i_2}, \dots, C_{i_p}\} \subseteq \pi_2 : D_j = C_{i_1} \cup C_{i_2} \cup \dots \cup C_{i_p}$

$$\forall \pi \in \Pi(X), \quad \pi_d \prec \pi \prec \pi_t$$

Sull'insieme di tutte le partizioni $\Pi(X)$ di un universo X è possibile definire una relazione d'ordine

$$\pi_1 \leq \pi_2$$
 iff $\forall C_i \in \pi_1, \exists D_i \in \pi_2 : C_i \subseteq D_i$

$$\pi_1 \ll \pi_2$$
 iff $\forall D_j \in \pi_2, \ \exists \{C_{i_1}, C_{i_2}, \dots, C_{i_p}\} \subseteq \pi_2 : D_j = C_{i_1} \cup C_{i_2} \cup \dots \cup C_{i_p}$

$$\forall \pi \in \Pi(X), \quad \pi_d \prec \pi \prec \pi_t$$

$$0 = H(\pi_t) \le H(\pi) \le H(\pi_t) = \log |X|$$

Theorem

 $\pi_1 \preceq \pi_2$ implica $H(\pi_2) \leq H(\pi_1)$

Theorem

$$\pi_1 \preceq \pi_2$$
 implica $H(\pi_2) \leq H(\pi_1)$

 $\pi_1 \preceq \pi_2$ implica $E(\pi_1) \leq E(\pi_2)$

Theorem

$$\pi_1 \leq \pi_2$$
 implica $H(\pi_2) \leq H(\pi_1)$

$$\pi_1 \leq \pi_2$$
 implica $E(\pi_1) \leq E(\pi_2)$

Tornando ai sistemi di informazione...

Theorem

$$A \subseteq B \subseteq Att implica \pi(B) \preceq \pi(A)$$

Theorem

$$\pi_1 \leq \pi_2$$
 implica $H(\pi_2) \leq H(\pi_1)$

$$\pi_1 \leq \pi_2$$
 implica $E(\pi_1) \leq E(\pi_2)$

Tornando ai sistemi di informazione...

Theorem

$$A \subseteq B \subseteq Att implica \pi(B) \leq \pi(A)$$

Quindi

$$H(\pi(B)) \leq H(\pi(A))$$

$$E(\pi(A)) \leq E(\pi(B))$$

Sistemi Incompleti: Esempio

Sistemi Incompleti: Esempio

Flat	Price	Rooms	Down-Town	Furniture
1	high	2	yes	*
2	high	*	yes	no
3	*	2	yes	no
4	low	*	no	no
5	low	1	*	no
6	*	*	yes	*
7	h	*	*	no
8		1	*	*
9	h	2	yes	no
10	I	1	no	*
11	*	2	yes	*

Sistemi Informativi Incompleti: definizione

Definition

An Incomplete Information System (IIS) is a structure

 $\mathcal{K}(X) = \langle X, Att, val(X), F \rangle$ where

 $F: X \times Att \mapsto val(X)$ is partially defined on a subset $D(\mathcal{K})$ of $X \times Att$

Sistemi Informativi Incompleti: definizione

Definition

An Incomplete Information System (IIS) is a structure

 $\mathcal{K}(X) = \langle X, Att, val(X), F \rangle$ where

 $F: X \times Att \mapsto val(X)$ is partially defined on a subset $D(\mathcal{K})$ of $X \times Att$

 $\forall a \in Att$, X_a insieme degli oggetti definiti su a

$$X_a := \{x \in X : (x, a) \in D(\mathcal{K})\}$$

Sistemi Informativi Incompleti: definizione

Definition

An Incomplete Information System (IIS) is a structure

 $\mathcal{K}(X) = \langle X, Att, val(X), F \rangle$ where

 $F: X \times Att \mapsto val(X)$ is partially defined on a subset D(K) of $X \times Att$

 $\forall a \in Att$, X_a insieme degli oggetti definiti su a

$$X_a := \{x \in X : (x,a) \in D(\mathcal{K})\}$$

Ipotesi: $\cup_a X_a = X$

In genere si definisce la relazione di similarità

In genere si definisce la relazione di similarità

Let
$$x, y \in X$$
, then xS_Ay iff $\forall a_i \in A$,
either $f_{a_i}(x) = f_{a_i}(y)$ or $f_{a_i}(x) = *$ or $f_{a_i}(y) = *$

In genere si definisce la relazione di similarità

Let
$$x, y \in X$$
, then xS_Ay iff $\forall a_i \in A$,
either $f_{a_i}(x) = f_{a_i}(y)$ or $f_{a_i}(x) = *$ or $f_{a_i}(y) = *$

Classi di similarità $S_A(x) := \{ y \in X : xS_Ay \}$

In genere si definisce la relazione di similarità

Let
$$x, y \in X$$
, then xS_Ay iff $\forall a_i \in A$,
either $f_{a_i}(x) = f_{a_i}(y)$ or $f_{a_i}(x) = *$ or $f_{a_i}(y) = *$

Classi di similarità $S_A(x) := \{ y \in X : xS_Ay \}$

L'unione delle classi di similarità è un covering (ricoprimento) dell'universo *X*

$$\cup_{\mathsf{X}}\mathcal{S}_{\mathsf{A}}(\mathsf{X})=\mathsf{X}$$

in genere non una partizione

Sistemi Incompleti: Esempio

Sistemi Incompleti: Esempio

Flat	Price	Rooms	Down-Town	Furniture
1	high	2	yes	*
2	high	*	yes	no
3	*	2	yes	no
4	low	*	no	no
5	low	1	*	no
6	medium	*	yes	*

Classi di similarità: $\{1,2,3\},\{1,2,3,6\},\,\{4,5\},\,\{3,6\}$

Siano a, b due attributi $val^*(a), val^*(b)$ i valori che possono assumere a, b più il valore *

Siano a, b due attributi $val^*(a), val^*(b)$ i valori che possono assumere a, b più il valore * Definiamo $f_{a,b}: X_a \cup X_b \mapsto val^*(a) \times val^*(b)$ come

Definiamo $f_{a,b}: X_a \cup X_b \mapsto val^*(a) \times val^*(b)$ come

Siano a, b due attributi $val^*(a), val^*(b)$ i valori che possono assumere a, b più il valore *

$$f_{a,b}(x) := \begin{cases} (f_a(x), f_b(x)) & x \in X_a \cap X_b \\ (f_a(x), *) & x \in X_a \cap (X_b)^c \\ (*, f_b(x)) & x \in (X_a)^c \cap X_b \end{cases}$$

Siano a, b due attributi $val^*(a), val^*(b)$ i valori che possono assumere a, b più il valore *

Definiamo $f_{a,b}: X_a \cup X_b \mapsto val^*(a) \times val^*(b)$ come

$$f_{a,b}(x) := \begin{cases} (f_a(x), f_b(x)) & x \in X_a \cap X_b \\ (f_a(x), *) & x \in X_a \cap (X_b)^c \\ (*, f_b(x)) & x \in (X_a)^c \cap X_b \end{cases}$$

Generalizzando a un insieme di attributi A

$$f_A: X_A \mapsto val^*(A) \text{ dove } val^*(A) = \Pi_{a_i \in A} val^*(a_i)$$

Siano a, b due attributi $val^*(a), val^*(b)$ i valori che possono assumere a, b più il valore *

Definiamo $f_{a,b}: X_a \cup X_b \mapsto val^*(a) \times val^*(b)$ come

$$f_{a,b}(x) := \begin{cases} (f_a(x), f_b(x)) & x \in X_a \cap X_b \\ (f_a(x), *) & x \in X_a \cap (X_b)^c \\ (*, f_b(x)) & x \in (X_a)^c \cap X_b \end{cases}$$

Generalizzando a un insieme di attributi A

$$f_A: X_A \mapsto val^*(A) \text{ dove } val^*(A) = \Pi_{a_i \in A} \ val^*(a_i)$$

$$\text{Il granulo } f_A^{-1}(\vec{\alpha}) = \{x \in X_A : f_A(x) = \vec{\alpha}\}$$

Siano a, b due attributi $val^*(a), val^*(b)$ i valori che possono assumere a, b più il valore *

Definiamo $f_{a,b}: X_a \cup X_b \mapsto val^*(a) \times val^*(b)$ come

$$f_{a,b}(x) := \begin{cases} (f_a(x), f_b(x)) & x \in X_a \cap X_b \\ (f_a(x), *) & x \in X_a \cap (X_b)^c \\ (*, f_b(x)) & x \in (X_a)^c \cap X_b \end{cases}$$

Generalizzando a un insieme di attributi A

$$f_A: X_A \mapsto val^*(A) \text{ dove } val^*(A) = \Pi_{a_i \in A} \ val^*(a_i)$$

$$\text{Il granulo } f_A^{-1}(\vec{\alpha}) = \{x \in X_A : f_A(x) = \vec{\alpha}\}$$

 $\{f_A^{-1}(\vec{\alpha}): \vec{\alpha} \in val^*(A)\}$ è una partizione di X_A

$$p(A_{\vec{\alpha}}) = \frac{|A_{\vec{\alpha}}|}{|X_{\mathcal{A}}|}$$
 $p(X^*) = 0$

$$p(A_{\vec{\alpha}}) = \frac{|A_{\vec{\alpha}}|}{|X_{\mathcal{A}}|}$$
 $p(X^*) = 0$

$$p(A_{\vec{\alpha}}) = \frac{|A_{\vec{\alpha}}|}{|X_{\mathcal{A}}|}$$
 $p(X^*) = 0$

Definition (Entropia)

Entropia

$$H(\mathcal{A}) = -\sum_{\vec{\alpha}} p(A_{\vec{\alpha}}) \log p(A_{\vec{\alpha}}) = \log |X_{\mathcal{A}}| - \frac{1}{|X_{\mathcal{A}}|} \sum_{\vec{\alpha}} |A_{\alpha}| \log |A_{\alpha}|$$

Co-entropy

$$E(A) = \frac{1}{|X_A|} \sum_{\vec{\alpha} \in V_A^*} |A_\alpha| \log |A_\alpha|$$

Caso 2 - ordine

Se $A \subseteq B$ allora $X_A \subseteq X_B$ e $\pi(B) << \pi(A)$ ma in generale non vale $H(A) \le H(B)$

Caso 2 - ordine

Se $A \subseteq B$ allora $X_A \subseteq X_B$ e $\pi(B) << \pi(A)$ ma in generale non vale $H(A) \le H(B)$

Problema: entropia dipende da $|X_A|$

Caso 2 - ordine

Se $A \subseteq B$ allora $X_A \subseteq X_B$ e $\pi(B) << \pi(A)$ ma in generale non vale $H(A) \le H(B)$

Problema: entropia dipende da $|X_A|$ Soluzione

$$H^*(\mathcal{A}) = \log |X| - \frac{1}{|X|} \sum_{\vec{\alpha}} |A_{\alpha}| \log |A_{\alpha}|$$

$$E^*(\mathcal{A}) = \frac{1}{|X|} \sum_{\vec{lpha} \in V_A^*} |A_{\alpha}| \log |A_{\alpha}|$$

Partizione
$$\pi = \{A_1, \dots, A_n\}$$
 Covering $\gamma = \{B_1, \dots, B_n\}$ $\forall x \in X, \sum_{i=1}^n \chi_{A_i}(x) = 1$

Partizione $\pi = \{A_1, \dots, A_n\}$	Covering $\gamma = \{B_1, \ldots, B_n\}$
$\forall x \in X, \sum_{i=1}^{n} \chi_{A_i}(x) = 1$	$n(x) = \sum_{i=1}^{n} \chi_{B_i}(x)$

Partizione $\pi = \{A_1, \dots, A_n\}$	Covering $\gamma = \{B_1, \ldots, B_n\}$
$\forall x \in X, \sum_{i=1}^{n} \chi_{A_i}(x) = 1$	$n(x) = \sum_{i=1}^n \chi_{B_i}(x)$
	$\omega_{B_i}(x) = \frac{1}{n(x)} \chi_{B_i}(x)$

Partizione $\pi = \{A_1, \dots, A_n\}$	Covering $\gamma = \{B_1, \ldots, B_n\}$
$\forall x \in X, \sum_{i=1}^{n} \chi_{A_i}(x) = 1$	$n(x) = \sum_{i=1}^{n} \chi_{B_i}(x)$
	$\omega_{B_i}(x) = \frac{1}{n(x)} \chi_{B_i}(x)$
	$\sum_{i=1}^n \omega_{B_i}(x) = 1$

Partizione $\pi = \{A_1, \dots, A_n\}$	Covering $\gamma = \{B_1, \ldots, B_n\}$
$\forall x \in X, \sum_{i=1}^{n} \chi_{A_i}(x) = 1$	$n(x) = \sum_{i=1}^{n} \chi_{B_i}(x)$
	$\omega_{B_i}(x) = \frac{1}{n(x)} \chi_{B_i}(x)$
	$\sum_{i=1}^n \omega_{B_i}(x) = 1$
$ A_i = \sum_{x \in X} \chi_{A_i}(x)$	

Partizione $\pi = \{A_1, \dots, A_n\}$	Covering $\gamma = \{B_1, \ldots, B_n\}$
$\forall x \in X, \sum_{i=1}^{n} \chi_{A_i}(x) = 1$	$n(x) = \sum_{i=1}^{n} \chi_{B_i}(x)$
	$\omega_{B_i}(x) = \frac{1}{n(x)} \chi_{B_i}(x)$
	$\sum_{i=1}^n \omega_{B_i}(x) = 1$
$ A_i = \sum_{x \in X} \chi_{A_i}(x)$	$m(B_i) = \sum_{x \in X} \omega_{B_i}(x)$

Partizione $\pi = \{A_1, \dots, A_n\}$	Covering $\gamma = \{B_1, \ldots, B_n\}$
$\forall x \in X, \sum_{i=1}^{n} \chi_{A_i}(x) = 1$	$n(x) = \sum_{i=1}^{n} \chi_{B_i}(x)$
	$\omega_{B_i}(x) = \frac{1}{n(x)} \chi_{B_i}(x)$
	$\sum_{i=1}^n \omega_{B_i}(x) = 1$
$ A_i = \sum_{x \in X} \chi_{A_i}(x)$	$m(B_i) = \sum_{x \in X} \omega_{B_i}(x)$
$p(A_i) = rac{ A_i }{ X }$	

Partizione $\pi = \{A_1, \dots, A_n\}$	Covering $\gamma = \{B_1, \ldots, B_n\}$
$\forall x \in X, \sum_{i=1}^{n} \chi_{A_i}(x) = 1$	$n(x) = \sum_{i=1}^{n} \chi_{B_i}(x)$
	$\omega_{B_i}(x) = \frac{1}{n(x)} \chi_{B_i}(x)$
	$\sum_{i=1}^n \omega_{B_i}(x) = 1$
$ A_i = \sum_{x \in X} \chi_{A_i}(x)$	$m(B_i) = \sum_{x \in X} \omega_{B_i}(x)$
$p(A_i) = rac{ A_i }{ X }$	$p(B_i) = rac{m(B_i)}{ X }$

Entropia di un covering

$$H(\gamma) = -\sum_{i=1}^{N} p(B_i) \log p(B_i) = \log |X| - \frac{1}{|X|} \sum_{i=1}^{N} m(B_i) \log m(B_i)$$

Co-entropia

$$E(\gamma) = \frac{1}{|X|} \sum_{i=1}^{N} m(B_i) \log m(B_i)$$

Caso 1 - soluzione 1

Entropia di un covering

$$H(\gamma) = -\sum_{i=1}^{N} p(B_i) \log p(B_i) = \log |X| - \frac{1}{|X|} \sum_{i=1}^{N} m(B_i) \log m(B_i)$$

Co-entropia

$$E(\gamma) = \frac{1}{|X|} \sum_{i=1}^{N} m(B_i) \log m(B_i)$$

Problema: monotonia entropia-ordine non preservata!!

Caso 1 - soluzione 1

Entropia di un covering

$$H(\gamma) = -\sum_{i=1}^{N} p(B_i) \log p(B_i) = \log |X| - \frac{1}{|X|} \sum_{i=1}^{N} m(B_i) \log m(B_i)$$

Co-entropia

$$E(\gamma) = \frac{1}{|X|} \sum_{i=1}^{N} m(B_i) \log m(B_i)$$

Problema: monotonia entropia-ordine non preservata!!

Osservazione: non è l'entropia di un fuzzy set (ad esempio De Luca, Termini, "A definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory", *Information and control*, 20, 301-312, 1972)

Covering $\gamma = \{B_1, \ldots, B_n\}$

Covering
$$\gamma = \{B_1, \ldots, B_n\}$$

$$p_{LX}(B_i) := \frac{|B_i|}{|X|}$$

Covering $\gamma = \{B_1, \ldots, B_n\}$

$$p_{LX}(B_i) := \frac{|B_i|}{|X|}$$

NB: In generale non vale $\sum_{i=1}^{N} p_{LX}(B_i) = 1$ (Si possono modificare le cose in modo che valga... soluzione 3!)

Covering $\gamma = \{B_1, \ldots, B_n\}$

$$p_{LX}(B_i) := \frac{|B_i|}{|X|}$$

NB: In generale non vale $\sum_{i=1}^{N} p_{LX}(B_i) = 1$ (Si possono modificare le cose in modo che valga... soluzione 3!) Pseudo entropia

$$H_{LX}(\gamma) = -\sum_{i=1}^{N} p_{LX}(B_i) \log p_{LX}(B_i) = (\sum_{i=1}^{N} |B_i| \frac{\log |X|}{|X|}) - \frac{1}{|X|} \sum_{i=1}^{N} |B_i| \log |B_i|$$

Covering $\gamma = \{B_1, \ldots, B_n\}$

$$p_{LX}(B_i) := \frac{|B_i|}{|X|}$$

NB: In generale non vale $\sum_{i=1}^{N} p_{LX}(B_i) = 1$ (Si possono modificare le cose in modo che valga... soluzione 3!) Pseudo entropia

$$H_{LX}(\gamma) = -\sum_{i=1}^{N} p_{LX}(B_i) \log p_{LX}(B_i) = (\sum_{i=1}^{N} |B_i| \frac{\log |X|}{|X|}) - \frac{1}{|X|} \sum_{i=1}^{N} |B_i| \log |B_i|$$

Pseudo co-entropia (è la def. di entropia di L.X.)

$$E_{LX}(\gamma) := \frac{1}{|X|} \sum_{i=1}^{N} |B_i| \log |B_i|$$

S relazione di similarità

Ordine tra covering

S relazione di similarità

Ordine tra covering

$$\gamma \leq_{\mathfrak{s}} \delta$$
 iff $\forall x : \mathcal{S}_{\gamma}(x) \subseteq \mathcal{S}_{\delta}(x)$

S relazione di similarità

Ordine tra covering

$$\gamma \leq_{s} \delta$$
 iff $\forall x : S_{\gamma}(x) \subseteq S_{\delta}(x)$

Ordine stretto

$$\gamma <_{\mathcal{S}} \delta$$
 iff $\forall x : \mathcal{S}_{\gamma}(x) \subseteq \mathcal{S}_{\delta}$ and $\exists x \in X$ such that $\mathcal{S}_{\gamma}(x) \neq \mathcal{S}_{\delta}(x)$

S relazione di similarità

Ordine tra covering

$$\gamma \leq_{s} \delta$$
 iff $\forall x : S_{\gamma}(x) \subseteq S_{\delta}(x)$

Ordine stretto

$$\gamma <_{s} \delta$$
 iff $\forall x : S_{\gamma}(x) \subseteq S_{\delta}$ and $\exists x \in X$ such that $S_{\gamma}(x) \neq S_{\delta}(x)$

Theorem (LX00)

$$\gamma \leq_{s} \delta$$
 implica $E_{LX}(\gamma) \leq E_{LX}(\delta)$

S relazione di similarità

Ordine tra covering

$$\gamma \leq_{s} \delta$$
 iff $\forall x : S_{\gamma}(x) \subseteq S_{\delta}(x)$

Ordine stretto

$$\gamma <_{s} \delta$$
 iff $\forall x : S_{\gamma}(x) \subseteq S_{\delta}$ and $\exists x \in X$ such that $S_{\gamma}(x) \neq S_{\delta}(x)$

Theorem (LX00)

$$\gamma \leq_{s} \delta$$
 implica $E_{LX}(\gamma) \leq E_{LX}(\delta)$

$$\gamma <_{s} \delta$$
 implica $E_{LX}(\gamma) < E_{LX}(\delta)$

S relazione di similarità

Ordine tra covering

$$\gamma \leq_{\mathbf{s}} \delta$$
 iff $\forall x : S_{\gamma}(x) \subseteq S_{\delta}(x)$

Ordine stretto

$$\gamma <_{s} \delta$$
 iff $\forall x : S_{\gamma}(x) \subseteq S_{\delta}$ and $\exists x \in X$ such that $S_{\gamma}(x) \neq S_{\delta}(x)$

Theorem (LX00)

$$\gamma \leq_{s} \delta$$
 implica $E_{LX}(\gamma) \leq E_{LX}(\delta)$

$$\gamma <_{s} \delta$$
 implica $E_{LX}(\gamma) < E_{LX}(\delta)$

$$A \subset B \subseteq Att implica E_{LX}(\gamma(A)) \leq E_{LX}(\gamma(B))$$

Definition

Let $\mathcal{K}^{(t_0)}(X)$ and $\mathcal{K}^{(t_1)}(X)$ be two incomplete information systems based on the same triple $\langle X, Att, val \rangle$ and characterized by two different information maps

$$F^{(t_0)}: X \times Att \mapsto val$$
 and $F^{(t_1)}: X \times Att \mapsto val$

Definition

Let $\mathcal{K}^{(t_0)}(X)$ and $\mathcal{K}^{(t_1)}(X)$ be two incomplete information systems based on the same triple $\langle X, Att, val \rangle$ and characterized by two different information maps

$$F^{(t_0)}: X \times Att \mapsto val$$
 and $F^{(t_1)}: X \times Att \mapsto val$

There is a monotonic increase of information iff

$$t_0 \le t_1$$
 and $\forall (x, a) \ (F^{(t_0)}(x, a) \ne * \Rightarrow F^{(t_1)}(x, a) = F^{(t_0)}(x, a))$

Definition

Let $\mathcal{K}^{(t_0)}(X)$ and $\mathcal{K}^{(t_1)}(X)$ be two incomplete information systems based on the same triple $\langle X, Att, val \rangle$ and characterized by two different information maps

$$F^{(t_0)}: X \times Att \mapsto val$$
 and $F^{(t_1)}: X \times Att \mapsto val$

There is a monotonic increase of information iff

$$t_0 \le t_1$$
 and $\forall (x, a) \ (F^{(t_0)}(x, a) \ne * \Rightarrow F^{(t_1)}(x, a) = F^{(t_0)}(x, a))$

We write $\mathcal{K}^{(t_0)}(X) \preceq \mathcal{K}^{(t_1)}(X)$

In breve: sostituisco * con valori definiti

In breve: sostituisco * con valori definiti

Theorem

$$\mathcal{K}^{(t_0)}(X) \preceq \mathcal{K}^{(t_1)}(X)$$
 implica $\gamma(t_1) \leq_s \gamma(t_0)$

Quindi

$$E_{LX}(\gamma(t_1)) \leq E_{LX}(\gamma(t_0))$$

The end