Coding Partitions

Fabio Burderi and Antonio Restivo

Dipartimento di Matematica e Applicazioni

Palermo

Varese - Luglio 17-18, 2006

PRIN 2005 - VARESE: LUGLIO 17 - 18, 2006 - p.

Let *A* be a finite alphabet. Let A^* denote the free monoid generated by *A*, and let $A^+ = A^* \setminus \{\varepsilon\}$.

A code X over A is a subset of A^+ . The words of X are called code words, the elements of X^* messages,

Let *A* be a finite alphabet. Let A^* denote the free monoid generated by *A*, and let $A^+ = A^* \setminus \{\varepsilon\}$.

A code X over A is a subset of A^+ . The words of X are called code words, the elements of X^* messages,

A code X is said to be *uniquely decipherable* (UD) if every message has an unique factorization into codewords, i.e. the equality

implies $x_1 x_2 \cdots x_n = y_1 y_2 \cdots y_m, \qquad x_i, y_j \in X$ $n = m \quad \text{and} \quad x_1 = y_1, \dots, x_n = y_n.$ Let *X* be a code and let $P = \{X_1, X_2, ...\}$, be a partition of *X* i.e. : $\bigcup_{i \ge 1} X_i = X$ and $X_i \cap X_j = \emptyset$, for $i \ne j$.

A *P*-*factorization* of an element $w \in X^+$ is a factorization

$$w = z_1 z_2 \cdots z_t$$

where:

•
$$\forall i \ z_i \in X_k^+$$
, $X_k \in P$

• if t > 1, $z_i \in X_k^+ \Rightarrow z_{i+1} \notin X_k^+$, for all $1 \le i \le t - 1$.

Example 1 $X = \{11, 00, 000, 111\} = \{x_1, x_2, x_3, x_4\},$ $P = \{X_1, X_2, \}, \quad X_1 = \{11, 00\}, \quad X_2 = \{000, 111\}.$ Let $w = 1100000111 \in X^+,$ **Example 1** $X = \{11, 00, 000, 111\} = \{x_1, x_2, x_3, x_4\},\$ $P = \{X_1, X_2, \}, \quad X_1 = \{11, 00\}, \quad X_2 = \{000, 111\}.$ Let $w = 1100000111 \in X^+, \quad w = x_1x_2x_3x_4 = x_1x_3x_2x_4$ $z_1z_2 = (1100)(000111) \text{ and } u_1u_2u_3u_4 = (11)(000)(00)(111)$ are P - factorizzations of z. **Example 1** $X = \{11, 00, 000, 111\} = \{x_1, x_2, x_3, x_4\},\$ $P = \{X_1, X_2, \}, \quad X_1 = \{11, 00\}, \quad X_2 = \{000, 111\}.$ Let $w = 1100000111 \in X^+, \quad w = x_1x_2x_3x_4 = x_1x_3x_2x_4$ $z_1z_2 = (1100)(000111) \text{ and } u_1u_2u_3u_4 = (11)(000)(00)(111)$ are P - factorizzations of z.

The partition *P* is called a *coding partition* if any element $w \in X^+$ has a *unique P*-*factorization*, i.e. if

$$w = z_1 z_2 \cdots z_s = u_1 u_2 \cdots u_t,$$

with $z_1 z_2 \cdots z_s$, $u_1 u_2 \cdots u_t$ *P*-*factorizations* of *w*, then: s = t and $z_i = u_i$ for $i = 1, \dots, s$. *P* is concatenatively independent if, for $i \neq j$, $X_i^+ \cap X_j^+ = \emptyset$.

P is *concatenatively independent* if, for $i \neq j$, $X_i^+ \cap X_j^+ = \emptyset$. **Example 2** $X = \{00, 11, 000, 111\}, P = \{X_1, X_2, \},$ $X_1 = \{00, 000\}, X_2 = \{11, 111\}.$ *P* is a coding partition of *X*. *P* is concatenatively independent if, for $i \neq j$, $X_i^+ \cap X_j^+ = \emptyset$.

Example 2 $X = \{00, 11, 000, 111\}, P = \{X_1, X_2, \},\$

 $X_1 = \{00, 000\}, \quad X_2 = \{11, 111\}.$

P is a coding partition of X.

Example 3 $X = \{0, 01, 10\}.$

The word $w = 010 \in X^+$ has two factorizations : w = (0)(10) = (01)(0).

P is concatenatively independent if, for $i \neq j$, $X_i^+ \cap X_j^+ = \emptyset$.

Example 2 $X = \{00, 11, 000, 111\}, P = \{X_1, X_2, \},\$

 $X_1 = \{00, 000\}, \quad X_2 = \{11, 111\}.$

P is a coding partition of X.

Example 3 $X = \{0, 01, 10\}.$

The word $w = 010 \in X^+$ has two factorizations : w = (0)(10) = (01)(0).

P is a coding partition of *X* if and only if *P* is the trivial partition: $P = \{X\}.$ Let X be a code and let $x_1x_2 \cdots x_s = y_1y_2 \cdots y_t$ be two factorizations of $w \in X^+$.

We say that the relation $x_1x_2 \cdots x_s = y_1y_2 \cdots y_t$ is *prime* if $\forall i < s, \forall j < t \implies x_1x_2 \cdots x_i \neq y_1y_2 \cdots y_j$.

A relation $w = x_1 x_2 \cdots x_s = y_1 y_2 \cdots y_t$, can be univocally factorized into prime relations.

Let X be a code and let $x_1x_2 \cdots x_s = y_1y_2 \cdots y_t$ be two factorizations of $w \in X^+$.

We say that the relation $x_1x_2 \cdots x_s = y_1y_2 \cdots y_t$ is *prime* if $\forall i < s, \forall j < t \Rightarrow x_1x_2 \cdots x_i \neq y_1y_2 \cdots y_j$.

A relation $w = x_1 x_2 \cdots x_s = y_1 y_2 \cdots y_t$, can be univocally factorized into prime relations.

Theorem 1 Let $P = \{X_1, X_2, ...\}$ be a partition of a code X. P is a coding partition of X iff for every prime relation $x_1x_2 \cdots x_s = y_1y_2 \cdots y_t$ there exists a set X_h in the partition, such that $\forall i \leq s, \forall j \leq t, x_i, y_j \in X_h$.

Theorem 2 The set of the coding partitions of a code X is a complete lattice.

Given a code X, we can then define the finest coding partition P of X. It is called the *characteristic* partition of X and it is denoted by P(X).

Theorem 2 The set of the coding partitions of a code X is a complete lattice.

Given a code X, we can then define the finest coding partition P of X. It is called the *characteristic* partition of X and it is denoted by P(X).

• *X* is a *UD* code if and only if P(X) is the *discrete partition*.

Theorem 2 The set of the coding partitions of a code X is a complete lattice.

Given a code X, we can then define the finest coding partition P of X. It is called the *characteristic* partition of X and it is denoted by P(X).

• *X* is a *UD* code if and only if P(X) is the *discrete partition*.

Given a partition $P = \{X_1, X_2, ...\}$ of a code X, a subset $Y \subseteq X$ is a *cross-section* of P, if $|Y \cap X_i| = 1$, for $i \ge 1$.

Theorem 3 If P is a coding partition of X, then any cross-section Y of P is a UD code.

A code X is called *ambiguous* if it is not UD. It is called *totally ambiguous* if |X| > 1 and P(X) is the trivial partition.

The code $X = \{01, 10, 1\}$ is totally ambiguous.

Theorem 4 Let $P(X) = \{X_1, X_2, ...\}$ be the characteristic partition of a code X, if $|X_i| > 1$ for some $i \ge 1$, then X_i is a totally ambiguous code.

Theorem 5 Let X be a code such that all proper subsets Y of X are UD codes. Then either X is a UD code or it is totally ambiguous.

Let X_0 be the union of all classes $Z \in P(X)$ such that |Z| = 1. X_0 is a UD code and is called the *unambiguous component* of X.

The *canonical partition* of *X* is:

$$P_C(X) = \{X_0, X_1, \dots\},\$$

where $|X_i| > 1$, for $i \ge 1$.

The sets X_i , with $i \ge 1$ are called the *totally ambiguous components* of X.

Example 4 Consider the code $X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\} = \{00, 0010, 1000, 11, 1111, 010, 011\}.$

 $U_1 = \{(10, \{1, 2\}), (11, \{4, 5\})\},\$

 $U_2 = \{(\varepsilon, \{4, 5\}), (\mathbf{00}, \{1, 2, 3\}), (\mathbf{11}, \{4, 5\})\},\$

 $U_3 = \{(\varepsilon, \{1, 2, 3\}), (\varepsilon, \{4, 5\}), (10, \{1, 2, 3\}), (11, \{4, 5\})\},\$

 $U_4 = U_2.$

So we have: $R_0 = \{6,7\}, R_1 = \{1,2,3\}, R_2 = \{4,5\}.$ Then $X_0 = \{010,011\}, X_1 = \{00,0010,1000\}, X_2 = \{11,111\}$ and $P_C(X) = \{X_0, X_1, X_2\}$ is the canonical partition of X. If a code X is infinite, one can have partitions having an infinite number of classes and, moreover, each class can contain infinitely many elements.

If a code X is infinite, one can have partitions having an infinite number of classes and, moreover, each class can contain infinitely many elements.

Consider a partition having a finite number of classes and such that each class is a *rational* set.

Theorem 6 Given a partition $P = \{X_1, X_2, \ldots, X_n\}$ such that X_i , for $i = 1, 2, \ldots, n$, is a rational set, it is decidable whether P is a coding partition.

If a code X is infinite, one can have partitions having an infinite number of classes and, moreover, each class can contain infinitely many elements.

Consider a partition having a finite number of classes and such that each class is a *rational* set.

Theorem 6 Given a partition $P = \{X_1, X_2, ..., X_n\}$ such that X_i , for i = 1, 2, ..., n, is a rational set, it is decidable whether P is a coding partition.

Given a partition $P = \{X_1, X_2, \dots, X_n\}$ of a code X, let $B = \{b_1, b_2, \dots, b_n\}$ be an alphabet and let $\beta : X \to B^+$ be the following map: $x \mapsto b_i^{|x|}$ if $x \in X_i$. We can extend β to a morphism from X^* to B^* iff P is a coding partition of X. **Theorem 7** If X is rational, the number of classes of $P_C(X)$ is finite and each class of $P_C(X)$ is a rational set.

Remark further that, if X is not rational, then $P_C(X)$ can have infinitely many classes, as shown by the following example.

Example 5

Consider the code $X = \{a^n b, c^n a^n b, a^n b c^n \mid n \ge 1\}.$

It is easy to verify that $P_C(X)$ contains infinitely many classes and that any class X_i is of the form $X_i = \{a^i b, c^i a^i b, a^i b c^i\}$. Let $P = \{X_1, X_2, ...\}$ be a coding partition of a code X, a component $X_i \in P$ is said maximal if $\forall w \notin X_i^+$ the partition $P' = \{X_1, ..., X_i \cup \{w\}, ...\}$ is not a coding partition.

A coding partition P is said maximal if every component of P is maximal.

Let $P = \{X_1, X_2, ...\}$ be a coding partition of a code X, a component $X_i \in P$ is said maximal if $\forall w \notin X_i^+$ the partition $P' = \{X_1, ..., X_i \cup \{w\}, ...\}$ is not a coding partition.

A coding partition P is said maximal if every component of P is maximal.

We observe that if *P* is a maximal coding partition of *X*, then $\forall w \in A^+$ the partition $P' = P \cup \{\{w\}\}$ is not a coding partition of $X \cup \{w\}$.

We recall that a code X is said complete if $F(X^*) = A^*$, where $F(X^*)$ is the set of factors of code words.

If $P = \{X\}$ is the trivial partition of X, P is maximal iff $X^+ = A^+$.

If $P = \{X\}$ is the trivial partition of X, P is maximal iff $X^+ = A^+$.

Theorem 9 Let X be a regular code and let P a non trivial coding partition of X. If X is complete then P is maximal.

If $P = \{X\}$ is the trivial partition of X, P is maximal iff $X^+ = A^+$.

Theorem 9 Let X be a regular code and let P a non trivial coding partition of X. If X is complete then P is maximal.

Theorem 10 Let $P = \{X_1, X_2, \dots, X_n\}$ be a coding partition of a code X and let \mathcal{V} be a variety of codes. If $X_i \in \mathcal{V}$, for $i = 1, 2, \dots, n$, then $X \in \mathcal{V}$.