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Abstract

We give asymptotic estimates of the frequency of occurrences of a symbol in a random word gen-
erated by any (non-ergodic) bicomponent stochastic model. More precisely, we consider the random
variable Y, representing the number of occurrences of a given symbol in a word of length n generated
at random; the stochastic model is defined by a rational formal series r having a linear representation
with two primitive components. This model includes the case when 7 is the product or the sum of
two primitive rational formal series. We obtain asymptotic evaluations for the mean and the variance
of Y;, and its limit distribution. These results improve the analysis presented in a recent work dealing
with the particular case where r is the product of two primitive rational formal series [5].

Keywords: Frequencies of pattern occurrences, automata and formal languages, limit distributions,
Perron—Frobenius theory, rational formal series.

1 Introduction

Estimating the frequency of given patterns in a random text is a classical problem studied in several
research areas of computer science and mathematics that has well-known applications in molecular biology
[11, 16, 9, 15, 18]. Pattern statistics studies this problem in a probabilistic framework: one or more
patterns are fixed and a text of length n is randomly generated by a memoryless source (also called
Bernoulli model) or a Markovian source (the Markovian model) where the probability of a symbol in any
position only depends on a finite number of previous occurrences [12, 16, 14]. Among the main goals of
the research in this context we recall the asymptotic expressions of mean and variance of the number of
pattern occurrences in the text and its limit distribution. Many results show a gaussian limit distribution
of the number of pattern occurrences in the sense of the central or local limit theorem [1]. In particular in
[14] properties of this kind are obtained for a pattern statistics which represents the number of (positions
of) occurrences of words from a regular language in a random string of length n generated in a Bernoulli
or a Markovian model.

This approach has been extended in [3, 4, 5] to the so-called rational stochastic model, where the
pattern is reduced to a single symbol and the text is randomly generated by means of a rational formal
series in two non-commutative variables. There are well-known linear time algorithms that generate a
random word of given length in such a model [7]. It is proved that the symbol frequency problem in
the rational model includes, as a special case, the general frequency problem of regular patterns in the
Markovian model (studied in [14]) and it is also known that the two models are not equivalent [3]. The
symbol frequency problem in the rational model is studied in [3, 4] in the ergodic case, i.e. when the
matrix associated with the rational formal series (counting the transitions between states) is primitive.
In [5] we have studied the same problem in a simple non-ergodic rational model, where the formal series
is given by the Cauchy product of two primitive rational formal series (the product model).

*This work has been supported by the Project M.I.U.R. COFIN “Formal languages and automata: theory and applica-
tions”.



In the present paper we carry on the analysis considering bicomponent rational models, defined by a
formal series which admits a linear representation with two primitive components. We obtain asymptotic
evaluations for the mean value and the variance of the number of symbol occurrences and its limit
distribution: the results strongly depend on whether the matrix defining the transition from the first
component to the second (communication matriz) is null or not. If it is not null, the results extend those
obtained in the product model [5], which occurs when the communication matrix has a special form.

On the other hand, if the communication matrix is null, then the formal series defining the model
is simply the sum of two primitive rational formal series (sum model) and the results we get are quite
different from the previous case. In this paper we present in detail the proofs concerning the sum model
and only state the other results. All proofs can be found in the extended version of this work [6].

The material we present is organized as follows. After recalling some preliminaries in Section 2 and
the rational stochastic model in Section 3, we revisit the primitive case in Section 4. In Section 5 we
introduce the bicomponent rational model; the special case of the sum is studied in Section 6 while in
the last one we present the analysis of our statistics in the general bicomponent model.

2 Preliminaries

We summarize some notions of probability theory used in the subsequent sections.

Let X be an integer valued random variable (r.v.), such that Pr{X = k} = p;, for every k € N. We
denote by Fx its distribution function, i.e. Fx(r) = Pr{X < 7} for every 7 € R. If the set of indices
{k | px # 0} is finite we can consider the moment generating function of X, given by ¥ x (2) = Y, oy Pre™
for every z € C. In this case the first two moments of X can be computed by

E(X) =¥%(0), EX?) =T%(0). (1)
Moreover, the characteristic function of X is defined by
®x () = E(eX) = Wx(it)

The function ®x is always well-defined for every ¢ € R, it is periodic of period 27 and it completely char-
acterizes the function Fx. Moreover it represents the classical tool to prove convergence in distribution.
Given a sequence of random variables {X,}, and a random variable X we say that X,, converges to X
in distribution (or in law) if lim, ,« Fx, (7) = Fx (1) for every point 7 € R of continuity for Fx. It is
well-known that X, converges to X in distribution if and only if ®x, (¢) tends to ®x(t) for every t € R.
Several forms of the central limit theorem are classically proved in this way [10, 8].

A convenient approach to prove the convergence in law to a Gaussian random variable relies on the
so called “quasi-power” theorems introduced in [13] (see also [8]) and implicitely used in the previous
literature [1]. For our purpose it is convenient to recall such a theorem in a simple form.

To this end, let {X,} be a sequence of random variables, where each X,, takes values in {0,1,...,n},

defined by a family of non-negative real coefficients {ci") | n, k € N} so that, for every k,n,
o

ijo &2

Define the function hy,(2) =Y 1_, cgc")ekz and observe that Ux, (2) = Z: ES; . Then, the following property
holds (for the proof see [8, Theorem 9.6] or [1, Theorem 1]).

Pr{X, =k} =

Theorem 1 Let {X,} and {h,} be defined as above and assume there exist two functions r(z), u(z),
both analytic and non-null at z = 0, and two positive constants c, p, such that for every |z| < ¢

ha(2) =1(2) -u(@)" + O(p")  and  p < |u(2)].

Also set

_ /(0 _ "0 (W(0))?
w0 ™M 7T w0) (u(O))



and assume o > 0 (variability condition). Then X\"/%‘" converges in distribution to the normal random

variable of mean 0 and variance 1, i.e. for every x € R

. Xn — pn 1 ‘/z _i2
1 Pri ————< = — 2 dt .
n—g{il-oo T{ \/o'_n _m} \/ﬁ _006

At last, we recall that a sequence of random variable {X,} converges in probability to a random
variable X if, for every ¢ > 0, Pr{|X,, — X| > ¢} tends to 0 as n goes to +o0. It is well-known that
convergence in probability implies convergence in law.

3 The rational stochastic model

The stochastic model we consider in this work is defined by using the notion of linear representation [2].
Let Ry be the semiring of non-negative real numbers. A linear representation over a binary alphabet
{a,b} is a triple (&, u,n) such that, for some integer m > 0, { and n are (column) vectors in R} and
p: {a,b}* — RT*™ is a monoid morphism. We say that m is the size of (&, 4, 7) and, for sake of brevity,
we set A = pu(a) and B = u(b) and denote by M the matrix A + B.

Such a linear representation defines a rational formal series r in the non-commutative variables a, b,
with coefficients in R, , i.e. a function r : {a,b}* — Ry, such that for any word w € {a,b}* the value
of r at wis (r,w) = £ u(w)n, where & denotes the transpose of .

Moreover, for every positive integer n, we can define a probability space as follows. Let us define a
computation path of length n as a string £ of the form

= qoT1172G2 " ** Gn—1TnGn (2)

where ¢; € {1,2,...,m} and z; € {a,b} for every j = 0,1,...,n and every i = 1,2,...,n. We denote
by Q,, the set of all computation paths of length n and, for each £ € Q,, of the form (2), we define the
probability of £ as

Pr{f} = a0 (1) o1 (®2) g1z " (Tn) g 190 T

§'Mmy
Denoting by P(,) the family of all subsets of ,,, it is clear that (2,,,P(2,), Pr) is a probability space.
Now, let us consider the random variable Y,, : Q,, — {0,1,...,n} such that ¥;,(¢) is the number of a
occurring in £, for each £ € Q,,. It is clear that, for every integer 0 < k < n, setting
o= Y Eutw (3)
|lw|=n,|w|a=k
we have
o
i=0¥j

To study the asymptotic behaviour of Y,,, one should consider the moment generating function of the
random variable Y,, which is defined as

hn(2)

=50

where hn(z) = 2:90,(;1)6:”c =¢'(Ae” + B)"n (5)
k=0

and observe that by (1) we have

_ hn(0) _ ha(0) - ha(0) — [h7 (0))?
EY,) = 7 (0) and Var(Y,) = [ (O] . (6)
Finally, the characteristic function of the random variable Y, is given by
_ itYn\ hn(Zt)
Py, (1) = BE™) = 1



4 The primitive case

In [3, 4] the moments and the limit distribution of Y,, are obtained, in the case when r admits a primitive
linear representation, i.e. the matrix M = p(a) + p(b) is primitive. We recall that a nonnegative matrix
T is called primitive if there exists p € N such that all entries of T? are strictly positive (see for instance
[17]). In this section, we recall those results and the main steps of their proofs, which will be useful in
subsequent sections.

First of all, observe that under this hypothesis, by Perron-Frobenius Theorem (see [17]) there exists
a unique eigenvalue A of M of maximum modulus which is real and positive. Furthermore, one can
associate with A strictly positive left and right eigenvectors v and u, normed so that v'u = 1 and one can
prove that, for each n € N,

M"™ = X" (uw' + C(n))

where C(n) is a real matrix such that |C(n);;| = O(¢™), for some 0 < ¢ < 1 and for any ¢,j and all n
large enough. Moreover, the matrix C = 3"° | C(n) is well-defined and v'C' = Cu = 0.

Proposition 2 If M is primitive and X is its Perron—Frobenius eigenvalue, then the generating function
hn(2) defined in (5) satisfies the following relations
h(0) = A"-a+0(")
RL(0) = nA"-aB+ "6+ O(p") (7)
RI0) = niA"-aB® +nl"- (ay +286) + O(\")
where |p| < X gives the contribution of smaller eigenvalues of M and the constants a, 8,7,0 are given by
v Au v ACAu ,CA , , JAC
1 VR 5—§TUUU+§UUTTI- ©))

From the previous proposition and equation (6) it is easy to prove the following theorem.

Y=B-F"+2

a=gwn, B=

Theorem 3 The mean value and the variance of Y, satisfy the relations
1)
EYn)=pn+—+0("),  Var(Yn)=7yn+0(), (9)

where 0 < e < 1 and «, 8,7, are defined in (8).
Notice that B = 0 implies 8 = 1 and v = § = 0, while A = 0 implies =y = § = 0; on the contrary,
if A#0# B then clearly 0 < 8 < 1.

As far as the limit distribution is concerned, in [3] it is proved that, when M is primitive and
A # 0 # B, Y, converges in law to a Gaussian random variable. To present this result, note that
by the Perron-Frobenius Theorem the equation

det (ul — Ae* —B) =0

defines an implicit function v = wu(z) analytic in a neighbourhood of z = 0 such that »(0) = X and
u'(0) # 0. Moreover, the following proposition holds.

Proposition 4 For every z near 0, as n tends to infinity we have

hn(z) = r(2) - u(2)" + O(p"),
where p < |u(z)| and r(z) is a rational function with respect to e* and u(z), analytic and non-null at
z=0.

Note that from the previous result one can express the moments of Y;, as function of u(z), obtaining
w'(0) u’(0)  (w(0)\*
_ - _ 10

where A = 4(0). Finally, in [3] it is shown that if A # 0 # B then v > 0, and hence Theorem 1 applies,
yielding

Theorem 5 If M is primitive and A # 0 # B, then the distribution of Y?/TTQ" converges to the standard

normal distribution.



5 The bicomponent model

Here we consider a linear representation (&, u,n) where the matrix u(a) + u(b) consists of two primitive
components. More formally, we consider a triple (£, u,n) such that there exist two primitive linear
representations (&1, p1,71) and (&2, ua,72), of size s and t respectively, satisfying the following relations:

£=@e),  uw=(MF RO (1) (1)

where po(z) € R for every = € {a,b}. In the sequel, we say that (£, u,n) is a bicomponent linear

representation.
For sake of brevity we use the notations A; = p;(a), B; = p;(b) and M; = A; + B, for j = 0,1,2.
Hence, we have

A:p(a):(f(l)l ig), B:p(b):(% gg), M=A+B=(Agl %‘;) (12)

To avoid trivial cases, from now on we assume A # 0 # B and & # 0 # 1.

Intuitively, this linear representation corresponds to a weighted non-deterministic finite state automa-
ton (which may have more than one initial state) such that its state diagram consists of two disjoint
strongly connected subgraphs, possibly equipped with some further arrows from the first component to
the second one. Here a computation path £ = goz1¢122¢> * - - ¢n_1Znqn can be of three different kinds:

1. All g;’s are in the first component (in which case we say that £ is contained in the first component);

2. There is an index 0 < s < n such that the indices qg,q1,...,qs are in the first component while
Gs+1,---,qn are in the second one. In this case x,11 is the label of the transition from the first to
the second component;

3. All g;’s are in the second component (in which case we say that ¢ is contained in the second
component).

Using the notation introduced in the previous section, from now on the function h,(z) defined in (5) is
referred to the linear representation (£, u,7). From the decomposition (12) it is easy to see that h,(2)
can be written in the form

ha(2) = WD (2) + ga(2) + B (2)

where h%l), gn and th’ correspond to the three kinds of computation paths of the automaton. More
precisely, for j = 1,2, we have

W) (2) = €;(Aj€* + Bj)™n;
that is h%j ) is the generating function of the primitive component (&;, uj,7;) and hence it satisfies the
properties of Section 4. Moreover

n—1

gn(2) = D €1 (Ar1€” + By)¥(Age” + By)(Ase” + By)" ™' i
=0

The bicomponent model introduced so far includes two special cases which occur respectively when the
formal series defined by (&, u,n) is the sum or the product of two rational formal series having primitive
linear representation.

Sum model: let 7 be the series defined by

(r,w) = & pr(W)m + Epz(w)ne Yw € {a, b}

where (§;, uj,7;) is a primitive linear representation for j = 1,2. Clearly, r admits a bicomponent
linear representation (£, u,n) which satisfies (11) and such that My = 0. As a consequence, the
computation paths of type 2 cannot occur and hence

ha(2) = ) (2) + WD (2)



Product model: consider the formal series

(rw)= Y muvi(z) m-7mhm(y) w Yw € {a,b}"

w=zy

where (7;,v;,7;) is a primitive linear representation for j = 1,2. Then,  admits a bicomponent
linear representation (&, 1, n) such that

fo, w= (M0 TEEO) o (nEn)),

va(x) T2

In this case, the three terms of h,(z) can be merged in a unique convolution

ha(2) = ) €i(Are” + B1) s (Ase” + B2)" "'y

=0

To study the random variable Y,,, one can consider the bivariate generating function Y ° ; h,(z)w™
of the sequence {h,(2)}, and analyse its singularities. It turns out that the main contribution always
depends on g¢,(z) and hence on My. As a consequence, if My # 0 the bicomponent model is well
represented by the product model; on the other hand, if My = 0 then g¢,(z) vanishes and we have the
sum model; this last case is considered in detail in Section 6.

The properties of Y,, depend on whether the Perron-Frobenius eigenvalues A1, A2 of M; and M, are
distinct or equal. In the first case the rational representation associated with the largest one determines
the main characteristics of Y;,. We say that (&;,u;,n;) is the dominant component if \; # A2 and
Aj = max{A1, A2}. On the contrary, if A\; = \» we say that the components are equipotent and they both
give a contribution to the asymptotic behaviour of Y,,.

In the following sections we extend the notation introduced so far, by appending indeces 1 and 2 to
the values associated with the linear representation (&1, u1,71) and (&2, u2,72), respectively. Thus, for
each j = 1,2, the values Y}E]), uj, v, Cj, aj, Bj, v, 0; are well-defined and associated with the linear
representation (&5, pj,m;).

6 Analysis of the sum model

In this section we study the behaviour of Y;, assuming My = 0. This case corresponds to the case where
the stochastic model is defined by the sum of two primitive formal series, having linear representation
(&1,pu1,m) and (&2, pa,72), respectively. Since here My = 0, to avoid trivial cases, we also assume
& #0#m.
We recall that the main difference with respect to the general analysis is that here g,(z) disappears
and hence
ha(2) = KP(2) + h2) (2) .

Thus, if Ay > A2 the leading term is s (z) and hence h,(z) behaves almost as in the primitive case. On
the other side, if \; = Ay, the bivariate generating function of {h,(z)}, has a simple pole in the main

sigularity, due to the contribution of both A% (2) and hsf)(z).

6.1 Dominant component in the sum model

In this section we study the behaviour of {Y,,} assuming A; > Ay (the case Ay < A is symmetric). We first
determine asymptotic expressions for mean and variance of Y,, and then we study its limit distribution.

Proposition 6 In the sum model, if \1 > Ao then the mean value and variance of Y, satisfy the following
relations:

P
E(Y,) = fin + a—l + 0", Var(Yy,) = vin + 0(1)
1

where 0 < e < 1.



Proof. To find asymptotic expressions for h,,(0) = h%l)(O) + h,(f)(o) and its derivatives, since M; and M,
are primitive, we apply Proposition 2 to both h%l)(z) and hg)(z). Being A1 > A2, the main contribution
is given by the first component, and hence h,(z) behaves almost as in the primitive case. Indeed, we get

ha(0) = Xlay+0(p")
hln(()) = nAl a1f1 + AT 61 + O(p™)
hn(0) = n’AT au i} + nAT(B1d1 + aam1) + O(AY)

where |p| < A1. Then, the result follows from (6). O

As far as the limit distribution is concerned, observe that if the main component does not degenerate
(i-e. assume A; # 0 # B;), then 81 > 0 and 7; > 0. Moreover h%l)(z) satisfies Proposition 4, and hence
by Theorem 1 we obtain the following result.

Theorem 7 In the sum model, if Ay > Ay and Ay # 0 # By then the distribution of Y"_T/li;" converges
to the normal standard distribution.

Now consider the degenerate cases A1 = 0 or By = 0 (note that they cannot occur at the same time,
otherwise M; = 0 and the first component vanishes). If B; = 0 then §; = 1 and 1 = §; = 0, hence we
get E(Y,) = n+ 0(e"), 0 < ¢ < 1. On the other side, if 41 = 0 then 8; = y3 = d; = 0 and hence we
get E(Y,,) = O(e™). In both cases we have ;3 = 0 and a direct computation proves Var(Y,) = O(e"),
showing that Y,, almost surely reduces to a single value (n or 0, respectively). Indeed, by Chebyshev’s
inequality, if By = 0 we have for every ¢ > 0

Var(Y,)

Pr{|Y, —n| > ¢} < R O(e™)

and hence, Y,, —n = o(1) in probability. A similar result can be obtained in the case A; = 0.

Theorem 8 In the sum model, assume Ay > As. If By =0 (resp. A1 =0) thenn—Y, (resp. Y,) tends
to 0 in probability.

6.2 Equipotent components in the sum model

Here we study the behaviour of Y,, assuming A; = As. Under this hypothesis two main subcases arise.
The first one occurs when the constants $; and B2 characterizing the mean value of Yél) and Y7§2) are
different. In this case the variance of Y,, is of the order ©(n?) and Y,, itself approximates a random
variable which may only assume two values. On the contrary, when 8; = 5 the order of growth of the
variance reduces to ©(n) and hence the asymptotic behaviour of Y,, is again concentrated around its
expected value and the limit distribution is a mixture of gaussians.

As before we first study the asymptotic behaviour of the moments of Y,, and then we turn our attention
to the limit distributions. For sake of brevity, let A\; = Ay = A.

Proposition 9 In the sum model, assume Ay = \a. If B1 # P2 then

a1 + a2 _ 2 Q12 (B — ,32)2
T tas + O0(1), Var(Yn)=n et

EY,)=n + O(n) .

If By = B2 = B then

a1y1 + asy2
ay + a2

EY,)=n-8 + OQ1), Var(Yp)=n- + 0(1) .

Proof. To find asymptotic expressions for h,,(0) = h%l)(O) + hg)(O) and its derivatives, since My and M,
are primitive, we apply Proposition 2 to both hg) () and hg) (). Being A1 = A2 = ), the contributions
of both components are relevant, and hence we get

hno(0) = A*oq +az) + O(p")
hp,(0) = nX*(a1f1 + azfs) + X" (01 + 82) + O(p")
hp(0) = 2\ (187 + a2f85) + nA"(B1d1 + B202 + a1 y1 + azye) + O(A™)



where |p| < A. Hence from (6) we get the following results, which prove the statement:

) a1 + azfe 01 + d2

EY,) = n o + o + 0@,

2 (B = B2)” 2(B1 — ) (01261 — 16)
Var(y,) = n2.%02(B1i—pB) _<<1171+azvz ) o
ar(¥) " (1 + a2)? A atan (a1 + a2)? +0(1)

O

Now, let us study the limit distribution. Let U,, be the Bernoullian random variable U, : Q, — {0,1}
such that for each £ € Q,,

1 if £ is entirely contained in the first component,
U,(f) =

0 if £ is entirely contained in the second component.

It is easy to show that

EMIm : _
51,,”1,," ifzx=1,
Pr{U, =z} =
&EMIne e
e ifz=0.

Furthermore, let L,, = 81U, + B2(1 — U,,) and observe that if 8; = s, then L, = 1 = f2.

Proposition 10 In the sum model, if Ay = Ay then the random variable % — L,, converges to 0 in

probability.

Proof. We first evaluate the variance of Y,, — nL,. Clearly Y,, and L,, are not independent, but we can
express their dependence by writing Y, = U vV + (1- Un)YTSm and hence

Yy —=nL, = U,- (YY) —np) + 1=U,) - (V2 —npy)

where U, is independent of Yn(i), for each i =1, 2.
Moreover, by the previous proposition E(Y,, —nL,) = O(1) and so

Var(Y, —nL,) = E(Ya—nL,)?)+0(1) =Y E(Ya —nL,)’ | U, =) Pr{U, =i} + O(1)
i=0,1
= Y EEY -n8)) 2 +0(1) =n w +0(1) .

j=1,2

Thus, by Chebyshev’s inequality, for every ¢ > 0 one gets
Y, 1
Pr { > } ~0 (_) .
n

2 _r,
Since convergence in probability implies convergence in law we obtain the following

n

Corollary 11 In the sum model, if \y = Ao then the distribution of Y, /n converges to the distribution

having probability mass al‘fﬁm at 51 and probability mass al‘fm at Ba.

The above results intuitively state that Y,, ~ nL,, where L, may only assume two values. Thus,

a natural question concernes the limit distribution of Y,, — nL,. To deal with this problem assume

v # 0 # 2 and consider the random variable V constructed by considering a Bernoullian r.v. U of

parameter p = a; /(a1 + az), two normal r.v.’s Ny, Ny of mean 0 and variance v, and 72, respectively,
and setting

V=U-N1+(1-U)-N; (13)

where we assume U, N1, N5 independent of one another. Note that, if v = 75 then V is a normal random
variable of mean 0 and variance v; = 7. The characteristic function of V is given by

(6 Y142 (e v2 42
1 -4t 2 —2¢

E(eY) = e +
a) + ag ay + oz



Proposition 12 In the sum model, if Ay = A2 and v1 # 0 # 72 then the distribution of Y”;\/%L“ converges
to the mixture, with weights

o . . )
i, ond +a R of two normal distributions with mean zero and variance
nlL

Y1 and o respectively. In particular, if y1 = v2 = v then % converges in law to the standard normal

random variable.

Proof. Let us define the r.v. V,, = % Its characteristic function is given by

) Y.,Ej)—nﬁj .
Ee) = Y B |Uy=i)-Pr{Up,=i}= Y E (e“ v ) : <$ + 0(6"))

i=0,1 j=1,2 a +az
ay 01,2 Q2 02,2 —1/2
= e 2 + e 2 + o(n YV .
a1 + a2 a1 + a2

O

The previous results hold even if 8, = B2 = ; notice that in that case L,, reduces to the constant 8
and v # 0 # 72 otherwise either A = 0 or B = 0. Hence we obtain the following

Corollary 13 In the sum model, assume Ay = A2 and B1 = B2 = B . Then the distribution of Yo ”B

converges to the mixture, with weights —*1— and —22—, of two normal distributions with mean zero and
altasz ajtasz

variance y1 and o respectively. In particular, if y1 = v2 = 7y then ’\‘/_"5 converges in law to the standard

normal random variable.

7 Analysis of the general model

In this section, we consider the bicomponent model in the general case when My # 0. The results we
present here extend those obtained in [5] for the product model, which now becomes a particular case.
We prove that the limit distributions for the dominant non-degenerate case and for the equipotent case
are the same as in the product model. Hence in these cases they do not depend on the matrix My. On
the contrary, in the dominant degenerate case, the limit distribution is specific for each model, depends
on the matrix My and also on the dominated component, even via its eigenvalues of lower modulus.

In the proofs, the main difference with respect to the previous sections is that now g,(z) is not null
and h,(z) always depends on its contribution. Due to space constraints, all proofs of this section are
omitted and can be found in [6]. We simply observe that most of them are based on a sort of singularity
analysis for matrix functions that can be developed in the same way as for traditional analytic functions.

We consider separately the case Ay > A2 (the case A\; < Ay is symmetric) and the case A\; = Aa. In
both cases, we first determine asymptotic expressions for mean and variance of Y, and then we study its
limit distribution.

7.1 Dominant component in the general model

Assuming \; > )Xz, the analysis of ¥;, depends on whether the dominant component degenerates (i.e.
A; =0 or B; = 0). If this is not the case, the results are the same as in the sum model. This is due

to the fact that now g,(2) gives a contribution to h,(z) of the same order as AV and this allows us to
argue as in Section 6.1. On the other hand, if the dominant component degenerates, a different reasoning
is needed, where a key role is played by the matrix () defined by

Q=NMI-M)™" (14)
The following proposition gives asymptotic expressions for mean value and variance.

Proposition 14 Assume My # 0 and Ay > Ao. Then the mean value and variance of Y, satisfy the
following relations:

1. If Ay #0 # By then E(Y,) = fin+ O(1) and Var(Y,) = yin + O(1), where 51 > 0 and v, > 0;

2. If B, =0 then E(Y,)=n — “lﬁf‘g#fgﬁg‘j;‘fw + O(e™) and Var(Y,) = ¢+ O(1);



3. If Ay = 0 then B(Y,) = Wlletth282)9m 4 () and Var(Y,) = ¢+ O(1);

where 0 <e <1 and ¢ > 0.
The same classification holds for the limit distributions.
Theorem 15 Assume Mg # 0 and A1 > Aa. Then the following statements hold:
1. If Ay # 0 # By then the distribution of Y";—\/liﬁbn converges to the standard normal distribution;

2. If By = 0 then the distribution of n —Y,, converges to the distribution having characteristic function

vim + v§ (Ao + Boe™)ul — A — Boe') 1y

®it) = vy (m + MoQn2) ’

3. If Ay = 0 then the distribution of Y, converges to the distribution having characteristic function

vim + vy (Aoeit + Bo)(MI — Ase®t — Bz)_lnz

() = vy (m + MoQ2)

(15)
The random variables Z; and Z, of characteristic functions ®; and ®, respectively may assume a
large variety of possible forms. The simplest cases occur when the matrices M; and M, have size 1 x 1

and hence My = A1, My = A2 and both A, and B> are constants. In this case Z; = W(X + G), where
X and W are Bernoullian r.v. of parameter p, and p,,, respectively given by

Mo(A1 — A2) 72
r = By /M, and w — )
P o/Mo P m + Mo(A — A2) 12

while G is a geometric r.v. of parameter By/(A\; — A;). More complicated forms for Z; and Z, occur
when the matrices M; and M, have more than one entry. Some examples of their behaviour can be found
in [5] in the case of the product model.

7.2 Equipotent component in the general model

Now, we consider the behaviour of Y,, assuming A; = A2. Under this hypothesis two main subcases
arise. The first one occurs when the constants 8; and [ are different. In this case the variance of Y,
is of the order ©(n?) and Y, itself converges in distribution to a uniform random variable (note that
this distribution is different from the one obtained in the sum model). On the contrary, when 8; = 3,
the order of growth of the variance reduces to ©(n) and hence the asymptotic behaviour of Y, is again
concentrated around its expected value, as for the sum.

The following proposition gives asymptotic expressions for mean value and variance.

Proposition 16 Assume My # 0 and Ay = Aoy = A. Then the following statements hold:
1. If By # Bo, then B(Y,) = 2582 n 4 O(1) and Var(Y,) = E282° 2 4 O(n);

2. If By = B> = B, then E(Y,)) = Bn+ O(1) and Var(Y,,) = 2422 n 4+ O(1) , where ; > 0 for some
ie{l,2}.

As far as the limit distribution is concerned, we obtain three different cases, summarized by the
following

Theorem 17 Assume My # 0, Ay = A2 = X and set v = MTW Then the following statements hold:

1. If B1 # Ba, then the distribution of Yy, /n converges to the uniform distribution in the interval [by, bs),
where by = min{f1, f2} and by = max{f,fa2};
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2. If 1 = B2 and 1 # 2 then the distribution of Yf/;_g" converges to the distribution having charac-
teristic function
37‘2‘%# — 67‘2%#
*) = —m =y (16)
2y 2y

3. If B1 = B2 and v1 = 72 then the distribution of Y’\‘/;_ﬁ" converges to the standard normal distribution.

By direct inspection, one can see that the characteristic function (16) describes a mixture of Gaussian
distribution of mean 0, with variances uniformly distributed in the interval with extremes % and L.

Y2
Indeed: ”
B(t) = ;/” e 3 dy
22 21 71
( e el ) r
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