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Introduction

Motivation

Probability on pattern occurrences in a random sequence of letters (generally called text) has
been widely studied and has applications in many areas of bio-informatics, code theory and data
compression, pattern matching, design and analysis of algorithms, games. Different aspects have
been considered: the length of the longest matching, the moments and the distributions of the
waiting times for first time occurrences of patterns, the distances between occurrences of patterns.

Here we focus on the frequency of occurrences of a repeated pattern in a random sequence of
letters. If we assume to know the probabilistic model (and its parameters) that generates the text,
the central question is: how many occurrences of a given pattern shall we expect in such a random
sequence? Below, we shall refer to this problem as the frequency problem.

Among the motivations for the study of this problem, one should mention code synchroniza-
tion [32], approximated pattern matching [40, 57, 26] and models for database system in wireless
communications [1]. However, the most recent applications are in molecular biology. Because of
many important sequencing projects, biologists have now large sets of DNA sequences from many
different organisms and they need quantitative tools and statistical methods to help them in ana-
lyzing sequences. Identifying words that show relevant deviations between their observed frequency
and their frequency predicted by a given model is an important way to extract information from
DNA sequences. Among the problems that may benefit from results on words count we quote gene
recognition: it is known that motif in DNA sequences have statistical properties that are different
in coding and non-coding regions and most techniques for the recognition of the genes (coding
regions) rely on such a difference. Another biological problem related to the frequency problem is
the search of patterns that are significantly over or under-represented in experimentally observed
DNA sequences. When the frequency of a short pattern is either too high or too low, the pattern
often turns out to have some biological function. Thus, identifying deviant short motifs might
point out unknown biological information [27, 47].

The frequency problem

The frequency problem can be studied under different assumptions concerning the source that
generates the text, or the pattern to search for through the text. The simplest model represents a
memoryless source: here the text is a sequence of letters chosen independently, according to a fixed
probability distribution. Such model is referred to as the Bernoulli model; if in particular all letters
are assigned the same probability, the model is said to be symmetric. Another classical model,
more general than the previous one, is defined by Markov processes [41, 54|, where the probability
to generate the next letter depends on a fixed number of previous occurrences. Other models
considered in the literature are called dynamical sources and describe non-Markovian processes,
characterized by unbounded dependency on past history [58].



The choice of pattern can lead to different settings, too. String matching is the basic pattern
matching problem; here, one counts the occurrences of a given string as a factor in the text. One
can also search for a finite set of strings and count the occurrences of all of them. Moreover one
may be interested in occurrences of the pattern as a subsequence of the text; in this case the
letters no longer need to be consecutive. A generalization of all these problems is attained when
the pattern is defined by a general regular expression, thus including infinite sets of words.

When a pattern is searched for through a text, various constraints can be imposed on the count-
ing of overlapping occurrences; occurrences are considered valid if they satisfy these constraints.
In the overlapping model, any occurrences is valid and two overlapping patterns both contribute to
the count. However, in some cases this assumption is not correct. For instance, biologists remark
that when an enzyme has bound to one occurrence of a pattern in a DNA sequence, other enzymes
cannot bind to the same portion of DNA. Thus, two overlapping sequences cannot be considered
valid simultaneously: one only counts the first occurrence and another occurrence is valid if it does
not overlap on the left with any other valid occurrence. As variants, one may count overlapping
occurrences of different patterns, or one may set a minimal distance between valid occurrences.

Several authors contributed to the study of the frequency problem, generally considering the
Bernoulli or the Markov models to generate the random text [21, 32, 33, 34, 26, 44, 50, 49, 45, 10].
The most important recent contributions belong to Guibas and Odlyzko who in a series of seminal
papers [32, 33, 34] laid the foundations for the analysis of the symmetric Bernoulli case.

The results have then been extended to the Markovian model, first by Li [44], who considered
the problem with no pattern occurrences, and, more recently, by Régnier and Szpankovski. In [50],
using a method that treats uniformly both the Bernoulli and the Markov models, they established
that the number of occurrences of a string is asymptotically normal, under a primitivity hypothesis
of the stochastic model. They also obtained large deviations results.

A recent improvement is due to Nicodéme, Salvy e Flajolet, that in [45] extended all the
previous results considering a text generated by a Markov source and counting the occurrences
of a pattern defined by an unrestricted regular expression. Their results hold under a primitivity
hypothesis on the stochastic matrix defining the Markov process.

Finally, non-Markovian models have been considered by Bourdon and Vallée. In [10] they
assumed the text was generated by dynamical sources and they considered generalized pattern,
entailing classical and patterns with “don’t-care-symbols”.

Our contribution

In this thesis, we study pattern occurrences in a new framework, introducing a stochastic model
defined via rational formal series in non-commuting variables (or, equivalently, by weighted au-
tomata). More precisely, given a formal series r : {a,b}* — Ry, for every integer n (satisfying
(r,z) # 0 for some z € {a,b}") we consider the probability space of all words in {a,b}" equipped
with the probability measure given by

P {w} = E& (w € {a,b}™).

z€{a,b}” (T7 m)

Then, we define the random variable Y, : {a,b}"™ — {0,1,...,n} such that Y, (w) equals the
number of occurrences of a in the word w of length n. The rational symbol frequency (RSF)
problem concerns the study of the distribution properties of the sequence {Y,},, assuming that
the series r defining the model is rational.

This setting generalizes the frequency problem studied in [45], which in fact turns out to be a
special case of the RSF problem. Indeed, we prove that the question of studying the number of



occurrences of a regular pattern in a text generated by a Markovian source can always be translated
into the RSF problem for a suitable rational series over two non-commuting variables, while the
converse does not hold. In this sense, the rational stochastic model properly extends the Markovian
models.

Our goals are estimating the moments of the random variable Y;, and determining local and
central limit distributions of the sequence {Y,}, as n tends to infinity. We first assume that the
transition matrix associated with the series defining the model is primitive. Then:

e We prove that the mean and the variance are asymptotically linear, that is there exist two
constants 8 and v such that E(Y;,) = fn+ 0O(1) and Var(Y,) = yn+ O(1); we provide precise
expressions for 8 and v and we prove that they are strictly positive (except for degenerate
cases).

e We show that a central limit theorem holds; the limit distribution approximates a Gaussian
behaviour and we explicitly determine the approximation error.

e We provide a condition that guarantees the existence of a Gaussian local limit theorem; to
state this condition, we introduce a notion of symbol periodicity for weighted automata which
extends the classical periodicity theory of Perron—Frobenius for non-negative matrices.

e As an application of the previous analysis, we obtain an asymptotic estimation of the growth
of the coefficients for a subclass of rational formal series in two commuting variables.

The results are then extended, dropping the primitive hypothesis usually assumed in the liter-
ature. In particular:

¢ We study bicomponent models, defined by weighted automaton with two strongly connected
components, obtaining in many cases limit distributions quite different from the Gaussian
one.

e We present a general approach to deal with arbitrary non-primitive models. Again, we start
from the decomposition of the weighted automaton defining the model into strongly connected
components, in order to detect the elements that mainly determine the limit distribution.
In the most relevant cases we establish the limit distribution, that is characterized by a
unimodal density function defined by polynomials over adjacent intervals.

Overview

The first part of the thesis presents the tools of the trade, consisting of preliminary notions, basic
properties but also more advanced results concerning formal series and languages, non-negative
matrices, limit theorems in probability theory. Moreover, we introduce the notion and the proper-
ties of symbol periodicity for non-negative matrices (see Section 2.4) and we prove a criterion for
the local convergence of a general sequence of random variables (see Section 3.7).

Chapter 1 is an introduction to rational formal series and their relation to languages. After
defining formal series in non-commuting variables having coefficients in a semiring, we present
the algebraic and topological structure of the set of formal series. Then we introduce the classes
of rational and recognizable series, focusing on the equality between such classes, due to the
Schiitzenberger Representation Theorem. We also consider weighted automata associated with
rational series, and define their counting matrices. Moreover, we extend the definitions to formal
series in partially commuting variables, by introducing the notion of trace monoid. Finally we take



into consideration the problem of estimating the maximum coefficient of a rational series, briefly
illustrating some results known in the literature.

In Chapter 2 we deal with matrices with coefficients in a positive semiring. On the one hand
we recall the Perron-Frobenius Theory for matrices with coefficients in R, ; on the other hand
we introduce the notion of symbol periodicity for matrices with polynomial entries. While the
former is a well-known subject (the main result [25] dates back to 1908), the definition of symbol
periodicity has been introduced recently [7]. However, such a notion and its properties are included
in this chapter, since in a certain sense they extend the Perron—Frobenius Theory.

Chapter 3 concerns probability theory and in particular central and local limit theorems for
sequences of random variables. First, we recall some basic notions and present some typical ex-
amples of probability distributions. Then we consider a sequence of Bernoulli trials; in particular
we focus on DeMoivre-Laplace limit theorems and their extensions to partial sums of more gen-
eral sequences of random variables. We also present Markov processes as a generalization of the
Bernoulli scheme. Finally, we take into consideration arbitrary sequences of discrete random vari-
ables, without assuming any condition of independence: we present the “quasi-power” theorem and
we prove a criterion to establish local limit properties holding for such sequences.

In the second part of the thesis we carry out the analysis of pattern statistics in rational models,
using the tools presented in Part I.

In Chapter 4 we start off the discussion, formally defining the rational model and the rational
symbol frequency (RSF) problem. In order to compare this problem with those previously dealt
with in the literature, we show how our model can be viewed as a proper extension of the Markovian
model as far as counting the occurrences of a regular set in a random text is concerned. Then we
analyze the primitive case, assuming that the transition matrix associated with the series defining
the rational model is primitive. We obtain asymptotic estimates for the mean value and the
variance of the statistics in exam, showing that they have asymptotic linear behaviour; we also
prove that they converge in distribution to a normal random variable; finally we establish a local
limit theorem which turns out to be related to the notion of symbol periodicity introduced in
Chapter 2. As an application of the previous analysis, we obtain an asymptotic estimation of the
growth of the coefficients for rational formal series in commuting variables.

In Chapter 5 we improve the analysis of the RSF problem, dropping the primitivity hypothesis.
More precisely, we consider bicomponent rational models, defined by rational series corresponding
to weighted automata with two primitive components. Two special examples are of particular
interest: they occur when the formal series defining the model is, respectively, the sum or the
product of two primitive formal series. The main results concern the asymptotic evaluation of
mean value and variance and the limit distribution of our statistics. We obtain in many cases limit
distributions quite different from the Gaussian one.

Finally, in Chapter 6 we present a general approach to the analysis of arbitrary rational
models, based on the decomposition of the weighted automaton defining the model into strongly
connected components. We introduce the notion of main chains and we show that they mainly
determine the limit behaviour of our statistics. In the most significant cases, we explicitly establish
the limit distribution, that is characterized by a unimodal density function defined by polynomials
over adjacent intervals. We finally provide a natural method to determine the limit distribution in
the general case.
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Tools of the trade



Chapter 1

Rational formal series

This chapter is an introduction to rational formal series in non-commuting variables having coef-
ficients in a semiring. Formal series have long been in use in all branches of mathematics; they
are fundamental especially in enumeration and combinatorics. In particular, the class of rational
series has many remarkable properties and plays a role that in some sense corresponds to the role
of regular languages in language theory.

The chapter is organized as follows. We first recall the definitions of monoid and semiring,
presenting typical examples. In Section 1.2 we introduce the notion of formal series over a free
monoid and the first relations with languages, provided by the support of a series and the charac-
teristic series of a language. Then we present the algebraic and topological structure of the set of
formal series. The class of rational series is defined in Section 1.4, together with its relation to the
class of regular languages. In Section 1.5 we consider recognizable series and the corresponding
weighted automata. We focus on the equality between recognizable and rational series, due to the
Schiitzenberger Representation Theorem. As a special consequence, we state an important result in
language theory, namely the Kleene Theorem. Afterwards, in 1.6, we define the counting matrices
associated with a rational series, which will be basic tools for the analysis of pattern statistic in
rational models we develop in Part II. In Section 1.7 we extend the definitions to formal series
in partially commuting variables, by introducing the notion of trace monoid. Finally, in the last
section we take into consideration the problem of estimating the maximum coefficient of a rational
series and we briefly illustrate some results known in the literature. A specific result on this topic
will be proven in Chapter 4 for the case of rational series in commuting variables and non-negative
coefficients.

1.1 Monoids and semirings

In this section we recall the basic definitions of monoid and semiring and we present some classical
examples.

A monoid is defined as a set M equipped with an operation “-” called product. The product
must be associative and have an identity element 1,4. Thus, a monoid is a group-like object that
in general fails to be a group because elements need not have an inverse within the object.

In language theory, the most important monoid is given by the family of words over a finite
alphabet. Formally, an alphabet is a finite set of symbols ¥ = {o1,02,...,0¢}. Such symbols
are also called letters. Any finite sequences w = wiws - --w, of symbols w; € ¥ is called word or
string. The sequence composed by no letters is called the empty word and it is denoted by €. The
set of all words over X is indicated by ¥*. The concatenation of two words w = wiws - - - w, and



v = vivs - - - Uy is defined as the word wy - --wypvy - - -v,. Clearly, the concatenation is associative
and its identity element is the empty word. Thus, ¥* is a monoid. Since for any monoid M and
any function f : ¥ — M there exists a unique monoid morphism f : ¥* — M extending f, ©*
is referred to as the free monoid generated by .

The length of a word w is the number of its letters and it is denoted by |w|. Moreover, for any
letter o € ¥, we use |w|, to denote the number of occurrences of ¢ in w. Clearly |¢| = |¢|, = O for
every 0 € .. A language over X is simply a subset of ¥*. An infinite language may be specified
by means of a generating system or using a recognition device: a generating system, namely a
grammar, defines a scheme to generate all words of the language; a recognizer, in most cases a
finite automaton, provides an algorithm that halts with the answer ’yes’ for words in the language
and halts with the answer 'no’ otherwise. We shall not linger on this topic here, the interested
reader may refer to [36].

A semiring is a set S equipped with two binary operations “-” and “+”, respectively called
product and sum, such that: < &, 4+ > is a commutative monoid with neutral element Og; < S, >
is a monoid with neutral element 1s; the product is distributive with respect to the sum; finally
for every a € S one has a-0s = 0s -a = 0s. In general, a semiring fails to be a ring because
elements need not have an inverse with respect to the addition, in other term the subtraction is
not defined. Thus the last condition, which in the case of rings follows by the previous axioms,
must be explicitly required.

We usually assume that the product is commutative and in this case the semiring is said to
be commutative, too. Moreover, we say that the semiring S is positive, if © +y = Os implies
=y =0s and z-y = Og implies x = 0s or y = Og for any pairs of elements z,y € S. In this case
we also write © > Os whenever z # 0s.

As an example of semiring one can clearly consider all usual numeric rings as C, R, Q, Z. The set
of positive integers N and the set of positive reals Ry are not ring, but they are positive semirings.
The boolean semiring B is defined over the set {0,1} by setting 1 +1 = 1.

Another interesting example is given by the tropical semiring T whose support is the set NU{oco}
and whose operations are the min for the addition and the usual sum for the multiplication. Clearly
the neutral element with respect to the addition is 0, while the identity element with respect to
the multiplication is co. Sometimes in the literature N is replaced by R; in this case someone also
gives the definition using maz instead of min.

A semiring can be built in a natural way from the power set 2™ of a monoid M: for every pair
of subsets A,B C M, weset A+ B=AUB and A-B = {ab|a € A,b € B}. Then the identity
element with respect to the sum is the empty set, while the identity element with respect to the
product is the set {14}.

If S is a semiring, then also S[z] and S@X¥ are semirings, where S[x] denotes of polynomials in
the variable z and coefficients in S, while S?*¥ indicates the set of matrices with entries in S and
indices in a finite set ). Such matrices are considered in Chapter 2, assuming S to be positive.

1.2 Formal series

From now on, let ¥ be a finite alphabet and S a semiring.

Definition 1.1 A formal series over ¥ is a mapping r : ¥* — S which associates each word
w € X* with the element (r,w) € S, called the coeflicient of w in r. The series r is usually written

as a formal sum
r= Z (ryw)w

wEX*
and the collection of all formal series is denoted S{E*)).



This terminology reflects the intuitive ideas connected with power series. Indeed, if S is R or C
and ¥ reduces to a unique element z, then we obtain the usual definition of power series studied in
classical analysis. We use the adjective ‘formal’ to indicate that the study of convergence properties
is not our main interest, as is in classical analysis.

Each series r € S{X*)) identifies a language in a natural way, namely the language

Supp(r) = {w € £*|(r,w) # Os}

that is called the support of r. The subset of S{X*)) consisting of all series with a finite support
is denoted by S(X*) and its elements are called polynomials. To emphasize the set of generators
Y = {01,092, ,04} of the monoid ¥*, we may also denote the family of all formal series by
S{o1,- -+ ,0¢) and the set of polynomials over ¥ by S{o1,--- ,0¢)-

On the other hand, given a language L C ¥*, there are many series r such that Supp(r) = L.
However we can uniquely define the characteristic series xr, € S{X*)), by setting

( w) N ls fwelL
XL, W) = 0s otherwise

for each w € ¥*. In other terms
XL = Z w .
weL
Clearly Supp(xr) = L while in general xgypp(ry # 7. A series r is said to be non-ambiguous if

(r,w) € {0,1} for every w € X* and this is equivalent to assuming X supp(ry = 7. Of course, all
series in B{X*)) are non-ambiguous.

1.3 The semiring of formal series

Let us now introduce some operations between formal series. If r, s € S{X*)), then their sum r + s
and their Cauchy product ! r - s are defined by setting

(r+s,w) = (r,w) + (s,w) ,

(’I"S,LU) = Z (T7$) ) (Say) )

TY=w

for every w € X*. The set S{X*)) constitutes a semiring with respect to the previous binary
operations and S(X*) is one of its subsemiring. The neutral element of the sum is given by the
series 0 such that (0,w) = Og for every w € ¥*, while the neutral element of the product is given
by the series 1 such that (1,w) = 1g if w = € and (1,w) = 0s otherwise.

Furthermore, we can define two external operations of S on S{(X*)), one acting on the left, the
other on the right, by setting

(a-rw)=a-(r,w), (r-a,w)=(nw) a,

for each a € S, r € S{(X*) and w € ¥*. With respect to these external products, S{X*)) is a
S-module, that is the external products are compatible with the internal operations of S and their
neutral elements.

Notice that we use the same symbol “-” to indicate both the Cauchy product and the external
products. In general, the dot will be omitted.

IThis definition is well-set not only for the monoid £*, but also for a general monoid M, provided that each
w € M has only finitely many factorization w = zy.

10



When applied to the series €, the external products give the same result. Thus, for each a € S
we can define a new series a - € = € - a, so obtaining a natural injection of S into S{X*)) as a
subsemiring. In particular the series corresponding to 1s and Os equal the neutral elements for the
product and the sum of series and they coincide with the series 1 and 0 defined above. Similarly,
there is a natural injection of X* into S{X*) as a submonoid: with each w € X* we associate
the series, still denoted by w, such that (w,w') = 1s if W' = w and (w,w’) = 0s otherwise. In
particular, the series determined by the empty word € coincides with the series 1 defined above. We
call monomials the series aw, for a € S and w € ¥*. Note that aw = wa, moreover all coefficients
of aw are null except the coefficient of w which equals a.

The semiring S{X*)) can be equipped with a topological structure. Indeed, it turns out to be
an ultrametric space with respect to the following distance 2. If r and s € S{X*)), we set

0 ifr=s
d(r,s) = { 2=%  otherwise

where k = min{|w| | w € £*, (r,w) # (s,w)}, |w| indicating the length of the word w.

Given a sequence {r;}icr of formal series, we say it is summable if there exist a series r such
that, for all € > 0, one can find a finite subset I' of I such that every finite J D I, satisfies the
equality

d er,r <e.
j€J

The series r is called the sum of the family {r;} and is unique.

1.4 The class of rational series

A formal series r € S{E*)) is called proper or quasi-regular if the coefficient of € (i.e. the constant
term of r) vanishes. This kind of series has the desirable property that the family {r'};>o is
summable. The sum of this family is denoted by r*

r* = Z r
i>0
and it is called the star of r. Moreover, r* denotes the sum of the positive powers of r, that is
rt = Zri .
i>0
By the definition we easily get
r*=14+r%, rt=rr* =r* 4.

If S is a ring, then the series —r is defined, and r* is just the inverse of 1 — r with respect to the
Cauchy product. Indeed, r*(1 —r) =r* —r*r =¢r* — ¢t = 1.

The sum, the Cauchy product and the star operation are called rational operations. Given a
subset E of S{X*), we call rational closure of E the minimum subset of S{X*)) containing E and
closed and closed under rational operations.

2This definition is well-set not only for the monoid ¥*, but also for a general monoid M, provided that it admits
a length function | - | satisfying |wiws| = |wi] - jw2|.

11



Definition 1.2 A series r is said to be S-rational if it is in the rational closure of the set of
polynomials S(X*).

The class of rational series is usually indicated as SHt(X*)), or SB (o1, 02,...,04)), if one wants
to emphasize the set of generators ¥ = {01, 09,...,0¢}.

If ¥ reduces to a unique element z, then one can prove that any rational series in R{(z)) converges
to a rational function p(z)/q(z), where p and ¢ are polynomials and ¢(z) # 0. This justifies the
use of the term “rational”.

The rational operations on the semiring of formal series are related to the following operations
among languages:

e union of two languages
L1UL2:{w|w€L1,orw€L2},

e product or concatenation of two languages

Ll 'Lz = {w1w2 |w1 € Ll,w2 € L2} y

e Kleene closure of a language, defined by the union of all its nonnegative powers

L* = LJLJ.

>0

Such operations are called rational and determine a well-known class of languages over a finite
alphabet.

Definition 1.3 A language L C $* is said to be regular if it belongs to the subset of 2% containing
the finite languages and closed under the rational operations.

Notice that this definition means that a rational language can be obtained from atomic languages
{e} and {o}, where o € X, by a finite number of applications of rational operations. The formula
expressing how a specific language is obtained from atomic languages by regular operations is called
regular expression.

Now, as a straightforward consequence of the definitions of support and characteristic series,
one can prove the following result, which is the reason why regular languages are often called
rational.

Theorem 1.4 A language L C X* is reqular if and only if it is the support of a rational series in

B(X")-

Finally, note that if H : S — &' is a semiring morphism, then it can be extended to a semiring
morphism H : S{X*)) — S'{(X*)), by setting for each series r with coefficients in S

H(r) = Z H(r,w) w .

wex*

As a consequence, if r € SEa(X*) then H(r) € S'Fet{¥*). In particular, if S is a positive
semiring, we can consider the morphism from S to B that associates 0s with Og and any other
a € § with 1p, so obtaining the following result.

Corollary 1.5 Let S be a positive semiring and r € SE*(($*)). Then the support of r is a regular
language.

12



1.5 Recognizable series and weighted automata

Definition 1.6 A series r € S{X*)) is called S-recognizable if there exists a non-empty finite set
Q, two vectors £,m € S and a monoid morphism p : T* — SC*? such that

(ryw) = & p(w)n (L.1)

for each word w € X*. The triple (€, u,n) is called a linear representation of r and the cardinality
of the set Q is said to be its size. (Remark that the morphism p is uniquely determined by its
restriction ps).

Using the terminology of automata theory, the elements of ) are often referred as states and
each p € @ such that &, # 0 (resp. 1, # 0) is said to be an initial (resp. final state). Moreover
we can define a transition map § : Q x ¥ — 29 by setting d(p,0) = {g € Q | p(0)p, # 0} for
every state p. Thus, defining a recognizable series is equivalent to defining a nondeterministic finite
automaton where transitions, initial and final states are equipped with weights in S. In the sequel
we use the expression weighted automaton over S to refer to this kind of automata. Notice that if
S is the boolean semiring B, we obtain the usual definition of finite state automaton.

Using the standard approach of automata theory, we can also represent a recognizable series
(or, more precisely, each of its linear representation) by a state diagram. This is a graph consisting
of:

e a node for every state in ), equipped with the weights &, and n,;

e an oriented edge from state p to state ¢ with label a € ¥ and weight p(a)p,, whenever
m(@)pg # 0.

Example 1.7 Consider the series r € B{{a, b)) defined by setting

1 il <1
(r,w) = { 0 otherwise

for every word w € {a,b}*. Such a series admits the following linear representation

& =00 ua)= (g o). utr=(g 3 ). n=(1)

corresponding to the automaton represented in Fig. 1.1.

b<:iPFa»‘b:>b

Figure 1.1: State diagram associated with the recognizable series of Example 1.7. The double circles
denote the final states, while the entering arrow denotes the initial state.
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Now, consider a computation path, that is a sequence of edges in the state diagram of the form
£ =po gpl w—gpz"'pn—l w—gpn-

We say that w = x122 - - -2, is the label of £, |¢| = n is its length and we denote by |¢|, = the
number of occurrences of a in w. Moreover if pg is an initial state and p,, is a final one we say that
£ is an accepting computation path for w. We also call weight of £ the value

w(ﬁ) = /"(331)1)01)1 : :u(wQ)le e 'N(mn)pn—wn €S.

Thus, the series r satisfies

()= Y Y & -w)-ng) .

PIEQ  ppyg

Furthermore, let P be the (@ x @)-matrix with entries in S{X*)) defined by

P= Z,u(o)a .

oEX

It is easy to see that the series P™,, associates each word w with the sum of weights of all paths
of length n starting in p, ending in ¢ and labelled by w. In other terms we have

&P =Y (nww,

wEX,

where X" denotes the set of words of length n in ¥*. Sincer =3 (> o5 (r,w) w, we also have

r=>Y &PM.

n>0

“o»

Observe that if S is the tropical semiring, then the operation denoted by “-” is interpreted as the
sum, while the operation denoted by “+4” is interpreted as the min. Hence in this case weights are
summed along paths, while the coefficient of a word is determined by the minimum weight among
all paths. Furthermore, if S = N is the traditional semiring of non-negative integers and &, 1,7 take
on values only in {0,1}, then the coefficient of w in r is the number of its accepting computation
paths. In this case, the weighted automaton is nothing more than a (nondeterministic) finite
automaton and we say that a word is accepted by the automaton if it admits at least one accepting
computation path; we also call language accepted by the automaton the set of all accepted words.

In general, we remark that the total sum of weights may vanish and hence there could exist
some accepting computation paths for a word w having null coefficient in r. Anyway, if S is a
positive semiring, this cannot happen and hence we obtain what follows.

Theorem 1.8 A language L C X* is accepted by a nondeterministic finite automaton if and only
if its characteristic series is S-recognizable for every positive semiring S.

We conclude this section stating two fundamental results. The first one was established in 1961
and its proof can be found in [5, Section 1.6] or [52, Theorem 2.3].

Theorem 1.9 (Schiitzenberger Representation Theorem) Let S be a semiring. Then a se-
ries r € S(X*)) is S-rational if and only if r is S-recognizable.

14



As a consequence, a rational formal series r € SE(¥*)) may be equivalently defined via a linear
representation or a weighted automaton over S.

The previous theorem, together with Theorems 1.4 and 1.8, yields another important result,
which was actually found a few years earlier (1956) and can be proved without reference to the
formal series, see for instance [36, Theorem 3.10].

Theorem 1.10 (Kleene’s Theorem) A language is regular if and only if it is accepted by a
finite automaton.

1.6 Counting matrices associated with rational series

We now introduce a natural notion of counting matrices associated with a given linear represen-
tation (&, p,n) over a positive semiring S. Such matrices will be basic tools for the analysis of
pattern statistics in rational models we develop in Part II.

First consider the matrix M € S@*? defined by setting

Mpq = Z #(0) pg

gEX

for any p, ¢ € ). This matrix is related to the paths of the state diagram. Indeed, for every positive
integer n and for every pairs of states p,q € @), the entry M",, sums up the weights of all paths
of length n starting in p and ending in ¢:

M"p = Z w(f) .

L:p—q, [|=n

If S = N and &, u,n take on values only in {0,1}, then M",, is exactly the number of paths of
length n in the state diagram. For this reason, we name M the counting matriz of the linear
representation (&, u,n).

Also, for any symbol a € ¥ and for any pair of states p,q € @, we set

Ma(x)pq = pa)pg = + Z () pg
og#a

where z is a variable. Then, it is easy to verify that

(Ma(@))"py = > p() 2!l

lL:p—q

In other terms, (M,(z))",, is the sum of monomials (according to the usual definition) like sxk,
where s is the sum of weights of paths from p to ¢ that have k occurrences of the letter a. M,(x)
can be again interpreted by assuming that S = N and &, u, 5 take on values only in {0,1}. Indeed,
in this case the coefficient of z* in M,(z)" equals the number of paths from p to ¢ that have k
occurrences of the letter a. For this reason M, (z) is called the a-counting matriz of the linear
representation.

Example 1.11 Fig. 1.2 represents the state diagram of a linear representation over B and the
corresponding a-counting matrix.
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Figure 1.2: Example of state diagram and a-counting matrix.

1.7 Trace monoids and languages

Up to now, we considered words over a non-commuting alphabet, that is we always assumed that
the order of letters into words was fixed. Here we generalize the definition of alphabet, to include
also the existence of pairs of commuting letters; words on such alphabet are called traces. In
particular, the commutative case occurs when all letters commute. We just note that traces have
been studied [19, 20, 12] as a formal model to describe concurrent processes: each letter represents
a process and when two processes are independent (i.e. they can be run in any order), then the
corresponding letters commute.

Given an alphabet ¥ = {o1,---0¢}, let I C ¥ x ¥ be an irreflexive and symmetric relation.
Then (%, I) is called concurrent alphabet, I is called independence relation and two symbols a and
b of ¥ such that (a,b) € I are said to be independent. The relation I can be interpreted as follows:
if (a,b) € I, then their order may be switch and ab is equivalent to ba. Thus, T is also called
commutativity relation.

It is easy to see that I induces an equivalence relation over ¥*: for any pairs of words u,v € X*,
if @ and b are symbols in ¥ such that (a,b) € I, then we set uabv =y ubav. The equivalence classes
are called traces and they are denoted [w], for w € ¥*. Observe that all words in the same
equivalence class have the same length and the same numbers of occurrences of each letter o.
Hence the values |[w]| and |[w]|, are well-defines. The relation =; is also invariant with respect to
the concatenation product. Thus, we can define the following operation between traces:

[wi] - [wa] = [wiws].

The set of all traces is a monoid with respect to the previous operation and it is usually denoted
M(Z,I). Given any monoid M and any function f : ¥ — A such that f(a) - f(b) = f(b) - f(a)
for each pair (a,b) € I, there exits a unique monoid morphism f : M(X,I) — A that extends f.
For this reason, M (X, ) is termed partially commutative free monoid generated by (X,I). More
briefly, we abbreviate it to trace monoid generated by X.

Special cases occur when I is the empty or the total irreflexive relation. If I = (), then the
trace monoid generated by ¥ is just the free monoid ¥*. Similarly, if (a,b) € I for every a # b in
¥, then we get the free commutative monoid ¥® with generators in ¥. In this case, any element
ol ---0’? of ® is represented in the form ¢! , where ¢ = (01,...,0¢) and i = (i1,...,43) € N¢ .
The relationship between ¥* and X® is given by the canonical monoid morphism F : ¥* — ©®
defined, for each word w € *, by F(w) = g%, where i; = |w|,, for every j.

The definition of formal power series can be given for a general trace monoid M(Z, I) instead
of ¥*. In particular one can generalize the notions of rational and recognizable series. Most of the
properties illustrated above still hold, but an important exception occurs as far as Schiitzenberger
Representation Theorem is concerned. Indeed, one can prove that it does not hold when ¥* is
replaced by any other monoid.
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Let us now introduce some notations relating to formal series in commutative variables. If
M = % then we use S[[o1,---,0¢]] to denote the family of all formal series in commutative
variables, SF®[[g1,--- ,0]] to denote the set of S-rational series over ¥® and S[oy,--- ,0¢] to
denote the set of polynomials. Observe that in this case, the notion of polynomial corresponds to
the usual ones. The canonical morphism F : ¥* — % extends to the semiring of formal series:

8«01:"' ,0’13» — S[[Ula"' ,0’[]]
r — F(r)
where the commutative series F(r) is defined by setting

Y = Z (r, )

l2lo;=i;

j=12,....¢

ouny
2
S
9

for every g € ¥®. The series F(r) is called the commutative image of r. Clearly, the extended map
is a semiring morphism and therefore it preserves the rational operations. Thus, the commutative
image F(r) of any r € SE{gy,--- ,0¢) is in SE®[[oq,--- ,0¢]].

We conclude this section by introducing trace languages over partially commutative free monoids.
We define trace language any subset of M(X,I). Note that each language L C X* defines in a
natural way the trace language

[L] ={lw]|w € L}.

A trace language T C M(X,I) is said to be rational if there exists a regular language L C ¥* such
that
T ={w]|weL}.

An algebraic characterization of the rational trace language is based on the usual rational opera-
tions: the class of rational trace languages over M (X, I) coincides with the smallest class of subsets
of M(X, ) containing all finite sets and closed with respect to the operations of union, product
and closure.

Another natural class of languages is given by the set of all trace languages recognized by finite
state automata over the trace monoid M (X, I), which can be defined extending the notion of finite
automaton over ¥.*. It turns out that a trace language T is recognizable if and only if the language

IinT={weX|[weT}

is regular. It is easy to verify that every recognizable trace language is rational. Nevertheless
the classes of rational and recognizable trace languages do not coincide unless the independence
relation is empty, as Example 1.12 shows. In other word an analogous to Kleene’s Theorem does
not hold for rational trace languages.

Example 1.12 Let M = {a,b}® be the trace monoid generated by the independence alphabet
{a, b}, where (a,b) € I and consider the regular language L = (ab)*. Then, the trace language

[L] = {lw] € M | |w|a = |w]s}
is regular, but it is not recognizable, since
lin [L] = {w € {a,b}" | |w|a = |w[s}

is not a regular language. |
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1.8 Growth of coefficients

Assume we are given a semiring § whose underlying set is contained in the reals, e.g., Z, N, Ry,
etc. Then consider a formal series r over a trace monoid M with coefficients in S and denote
by (r,w) the corresponding coefficient of the element w € M. The evaluation of the growth of
coefficients of r is a problem of interest in language theory, especially relating to the ambiguity
of formal grammar (or finite automata) generating (recognizing, resp.) the support of the series.
More formally, let us give the following definition.

Definition 1.13 Given a monoid M and a semiring S C R, the maximum function associated
with the series r € S(M)) is defined as

9r(n) = max |(r,w)|

where |(r,x)| denotes the absolute value of (r,x), while |w| is the length of w.

For rational formal series over a free monoid with integer coefficients, the growth of the coeffi-
cients was investigated in [53] (see also [51]), where it is proved that for such a series r either there
exists k € N such that g,.(n) =0 (n*) or |(r,w;)| > 2/“il for a sequence of words {w;} of increasing
length. In the first case, the series is the sum of products of at most k£ + 1 characteristic series of
regular languages over the free monoid (see also [5, Corollary 2.11.]).

Different results are obtained in the algebraic case (for precise definitions see [52]); a wide
literature has been devoted to this problem (see for instance [42, 61, 64]). In particular, it has been
recently proved that there are context-free grammars that have a logarithmic degree of ambiguity
[63] and this implies the existence of algebraic formal series with logarithmic maximum function.

Similarly, the result cannot be extended to rational series over partially commutative free
monoids. Given a trace language L and the trace language T = [L], we call ambiguity of a trace
t € T and ambiguity of T of degree n (with respect to L) the integers

Ambp(t) = #{w e tnNL} and Ambr(n) = . ITH\%T( Ambr(t) .
€1, |t|=n

From an example given in [62] one can prove that there exists a regular trace language, defined
over the monoid generated by the independence alphabet ({a,b,c,d},{(a,b),(b,a), (b,c), (c,b),
(¢,d),(d,c), (a,d),(d,a)}), that has a logarithmic ambiguity degree. Again, this implies the exis-
tence of rational series over trace monoids having logarithmic maximum function.

Referring to the growth of coefficients in a series, another case can be found in the literature,
which is related to the tropical semiring T. In [55], Imre Simon proves that for all T-rational series
r over the free monoid {a, b}*, there exists an integer k such that (r,w) = O(|w|'/*) holds for all
w € {a,b}*. Moreover it is proven that for each positive integer k, there exist a T-rational series
7 such that g, (n) = ©(n'/*). Thus, the hierarchy is strict though it is not proven that all series
have an asymptotic growth of this kind.

As far as we know, the general problem of characterizing the order of magnitude of g,(n)
for series in commutative variables is still open. In Section 4.5 we prove a result concerning the
rational case with two commuting variables and coefficients in Ry . For each k£ € N, we provide
a class of Ry -rational formal series in commutative variables whose maximum functions satisfy
gr(n) = (/22" for some positive real X. This result somehow generalizes the following
well-known property: given a rational fraction p(x)/q(x) where p(z) and g(z) are two polynomials
with coefficients in the field of real numbers (with ¢(0) # 0), the coefficient of the term z™ in its
Taylor expansion is asymptotically equivalent to a linear combination of expressions of the form
n*~1\" where ) is a root of ¢(z) and k its multiplicity, cf. [35, Theorem 6.8] or [52, Lemma I1.9.7].
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Chapter 2

Non-negative matrices

In this chapter we deal with matrices with coefficients in a positive semiring. Our aim is to provide
both classical and new tools that we shall apply in Part II. Thus, on the one hand we present the
Perron—Frobenius Theory for matrices with coefficients in R, ; on the other hand we introduce the
notion of symbol periodicity for matrices with polynomial entries. Notice that, while the former is a
well-known subject (the main result [25] dates back to 1908), the definition of symbol periodicity is
very recent. Indeed, we introduced it in 2001 [7] to prove a local limit theorem in pattern statistics
(see Section 4.4.2). However, such a notion and its properties are included in this chapter, since
in a certain sense they extend the Perron—Frobenius Theory; moreover, strong analogies occur
(compare for instance Theorem 2.12 and Proposition 2.25).

The chapter is organized as follows. We begin recalling the basic definitions and notations
concerning matrices. In Section 2.2 we illustrate the general structure of a matrix with coefficients
in a positive semiring and we give the definitions of primitive, irreducible and periodic matrices.
In Section 2.3 we summarize the main results of Perron—Frobenius Theory for matrices with coef-
ficients in Ry . All proofs are omitted and can be found for instance in [54]. Section 2.4 is devoted
to the notion of symbol periodicity for matrices with polynomial entries: after the definitions, we
present some properties and in particular we focus on the eigenvalues of such matrices. Finally,
we give some general notation on matrix functions in Section 2.5.

In Part IT we shall apply these results to matrices associated with weighted automata (or linear
representations). For this reason, this kind of matrices are used in this chapter as leading examples.

2.1 Basics on matrices

Given a semiring S and a finite set (), consider the set S®*? of all square matrices M : Q xQ = S.
The elements in @ are referred to as indices; we write M = (Myq)(p,q)c@x@ OF simply M = (Mp,)
and we say that that M, € S is the pg-component (or entry) of M. Clearly, S?*? is a semiring
with respect to the usual operations of sum and product between matrices. The neutral elements
are the null matrix 0, whose entries are all null, and the diagonal matrix I, defined by setting
I,, = 1 for any index ¢ and I, = 0 for every pairs of indices p # g. We also use S@ to denote
the set of (column) vectors with indices in () and components in S. Given a vector v = (vq)4e@,
we indicate the corresponding row vector by v,.. For any index ¢, the row g of a matrix M is the
vector (Mpg)geq, while the column ¢ of M is the vector (Myq)peq. Moreover we call the transpose
of M the matrix M, whose pg-entry is given by M,,. To avoid the use of brackets, we use the
expression M™,, to denote the pg-entry of the matrix M™.

If the semiring S is included in R, then we say that M is non-negative (and we write M > 0)
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whenever its entries are all greater than or equal to 0. If all entries are positive, we say that the
matrix is positive too and we write M > 0. In general, if S is a positive semiring, then all matrices
are said to be non-negative and M is positive if its components are all different from zero. A trivial
remark: M # 0 and M > 0 do not imply M > 0!

One says that A € S is an eigenvalue of M if there exists a vector v such that Mv = Av. In
this case v is a (right) eigenvector of M related to A. Then, A is also an eigenvalue of M., that is
there exists a vector u such that A\u = M, u = (u, M),. The vector u is also called left eigenvalue
of M related to A.

If in particular S is a field (that is each a € S admits an opposite —a € S such that a+(—a) =0
and moreover the product is commutative), then we can define the determinant of a matrix M to

be the value in §
Det(M) = Z(_l)a(p) ) H Mp(q) >
p q€Q

where p is a permutation of the indices and o(p) is the number of inversions within p. One can prove
that, for each pair of matrices A and B, one has Det(A - B) = Det(A)- Det(B). The determinant
of the matrix M — wI is a polynomial in the variable w and coefficients in §. It is called the
characteristic polynomial of M and its degree equals the cardinality of Q). It turns out that its
roots are the eigenvalues of the matrix M.

For the sake of simplicity, let us now assume @ = {1,2,---m}. Then, for every pair of indices
P, q we define minor the determinant my, of the matrix obtained by M deleting row p and column
g. It turns out that, for any p € @, the determinant of M = (Mp,) can be written as

Det(M) = > (=1)PH1Mpy - mypg -
q€Q

The matrix whose entries are (—1)PT%m,, is called the adjoint matriz of M and is denoted by
Adj(M). A matrix M admits an inverse M ! such that M - M~ = M1 - M =TI if and only if
the determinant of M is not null. Such an inverse is defined as

Adj(M)

M= 29
Det(M)

2.2 Decomposition of matrices over a positive semiring

From now on, we take into consideration matrices with coefficients in a positive semiring S and
we refer to such matrices as nonnegative ones. In particular, in this section we study the general
structure of a non-negative matrix. To provide a clearer exposition, we shall represent matrices by
means of graphs. Notice that we defined a similar correspondence between matrices and graphs in
Section 1.5, when considering weighted automata.

Given a matrix M € S®*?, the incidence graph of M is a directed graph where the set of vertices
is @ and an edge from index p to index gq is drawn if M,, # 0. Now, £ : go, = ¢1 = --- = ¢n,
n > 1is a path in the incidence graph if ¢; € ) for each ¢ = 0,1,...,n and My, , 4, # 0 for each
i=1,2,...,n (if go = g, we say that £is a go-cycle). In other terms, M™,, # 0 if and only if there
exists at least one path from p to ¢ of length n. In this case, using the standard terms of graph
theory, we say that p leads to gq. This defines a partial order between indices.

If p leads to ¢ and ¢ leads to p, then we say that p and ¢ communicate and we write p < q.
Now, consider the reflexive closure of <. This defines an equivalence relation and its equivalence
classes are called strongly connected components or irreducible components of the graph. For the
sake of brevity we simply call them components of the matrix M.
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Figure 2.1: Incidence graph of the matrix of Example 2.1; the dashed boxes denote the irreducible
components.

Example 2.1 Consider the following square matrix with index in @ = {1,2,---,8} and coeffi-
cients in B

1 2 3 45 6 7 8

1 1

2 1

3|1 1
M= 4 1

) 1 1

6 11

7 1 11

8 1

Note that the null entries are omitted, while the indices for both rows and columns are shown.
Fig. 2.1 illustrates the incidence graph of M and its components {1,3,4,6,8}, {2,5} and {7}. O

Definition 2.2 If a non-negative matriz admits exactly one strongly connected component, it is
said to be irreducible.

Observe that if M is an irreducible matrix, then all indices communicate. Therefore, for each pair
of indices p, ¢ there exists an integer h such that M",, > 0.

Definition 2.3 Given a non-negative matriz M, for any index q, we call period of q the greatest
common divisor (GCD) of the positive integers h such that M",, # 0, with the convention that
GCD(D) = +oo.

In other terms, to compute the period of an index ¢, one has to consider all g-cycles and take the
greatest common divisor of their lengths. If p < ¢, then it turns out that ¢ and p have the same
period; hence the period of a component is also well-defined. This yields the following

Definition 2.4 The period of an irreducible matriz M is the common period of its indices. If
such period is greater than one, then M is said to be periodic.

We now introduce the definition of primitive matrices.
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Definition 2.5 A nonnegative matrixz M is called primitive if there exists a positive integer h such
that M" > 0, which implies M™ > 0 for every n > h.

Clearly, if a matrix is primitive, then it is also irreducible. More precisely, one can prove the
following result.

Theorem 2.6 A matriz M is primitive if and only if M is irreducible and has period 1.

It should be emphasized that the definitions of irreducibility and primitivity, as the definition
of strongly connected components of a matrix, are referred only to the positions of its non-null
entries, whose exact values are not relevant. As an example consider a weighted automaton over
the alphabet {a,b}, let M be its counting matrix and M (z) its a-counting matrix. Then M and
M (z) have the same components; moreover M is irreducible (resp. primitive) if and only if M (x)
does.

Example 2.7 Consider the matrix M € B?>*2? defined by setting Mi; = My = 0 and My =
My = 1. Such a matrix M is irreducible, but not primitive, having period 2. These properties
can be easily deduced from the incidence graph of M drawn in Fig. 2.2 or observing that for every
odd integer h we have M" = M while for every even h M" is the identity matrix. O

Figure 2.2: Incidence graph of the matrix of Example 2.7.

Let us now go back to a general matrix M and its components. The partial order defined in
() induces a partial order among such components: we say that the component C; leads to the
component Cy if there exist two indices p € C; and g € Cs such that p leads to q. We also define
reduced graph of M the directed acyclic graph where C1,C5,...,C; are the vertices and any pair
(C;,C;) is an edge if and only if C; leads to Cj.

As a consequence, any matrix M € S9*% can be decomposed in a standard form, since one
can always rearrange the set of indices @, following the partial order among components. Thus,
up to a permutation of indices, M can be written as a triangular block matrix of the form

M1 M12 M13 e Mls
M= 0 M M23 e Mo, (2.1)
0O 0 0 - M,

where each M; corresponds to the strongly connected component C; and every M;; corresponds
to the transitions from vertices of C; to vertices of C; in the incidence graph of M.
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Example 2.8 Consider again the matrix of Example 2.1. Following the partial order among its
components, we can rearrange the set of indices. Thus, up to a permutation, M can be written as

712 5|1 3 4 6 8
711 1 1
2 1
) 11
1 1
3 1 1
4 1
6 1 1
8 1

Remark that, since the order between indices is not total, neither the structure of the decom-
position, nor the matrices M;, M;; are uniquely determined. For instance, when decomposing
the matrix of Example 2.8, we may permutate the indices 2 and 5, belonging to the same class,
thus obtaining a new matrix M». Or we may exchange the blocks My and M; corresponding to
the indices {2,5} and {1, 3,4, 6,8}, respectively, thus determining new matrices M1a, Mi3, Moas.
Anyway, the number of components and the number of vanishing matrices M;; are invariant.

2.3 The Perron—Frobenius Theory

When § is the semiring of positive real numbers a classical result is given by the following theorem
(see [54, Theorem 1.1]).

Theorem 2.9 (Perron—Frobenius Theorem) Let M be a primitive matriz with entries in Ry .
There exists an eigenvalue \ of M such that:

1. X is real and positive;
with X\ we can associate strictly positive left and right eigenvector;
[v| < A for every eigenvalue v # ;

A is a simple root of the characteristic polynomial of T';

the matriz Adj(AI — M) is positive.

In the sequel, we refer to the unique eigenvalue of maximum modulus of a primitive matrix as its
Perron—Frobenius eigenvalue.

A first consequence of the previous theorem concerns the asymptotic growth of the entries of
the n-th power of a primitive matrix M. More precisely, the following property holds [54, Theorem
1.2].

Proposition 2.10 If M is a primitive matriz with entries in Ry and X is its Perron—Frobenius
eigenvalue, then
M™ =\ (wv, + C(n)) for n — +00

where v and u are strictly positive left and right eigenvectors of M corresponding to the eigenvalue
A, normed so that v,u = 1, while C(n) is a real matriz such that each of its entries is O(e™) for
some 0 <e < 1.

23



A further application is given by the following proposition [54, Exercise 1.9], to be used in the next
sections.

Proposition 2.11 Let C be a complex matriz, set |C| = (|Cpq|) and let vy be one of the eigenvalues
of C. If M is a primitive matriz over Ry such that |Cpq| < Myq for every p,q and if X is its
Perron—Frobenius eigenvalue, then |y| < X. Moreover, if |y| = A, then necessarily |C| = M.

If the matrix M is not primitive but it is irreducible, then the Perron-Frobenius theorem can
be extended in the following sense [54, Theorems 1.5 and 1.7].

Theorem 2.12 (Perron-Frobenius Theorem for irreducible matrices) Let M an irreducible
matriz with period p. Then all the assertions of the Perron—Frobenius Theorem hold, except that
3) is replaced by the weaker statements: |v| < X for any eigenvalue v of M. Moreover there exist
precisely p distinct eigenvalues with modulus X, namely \- 2%, for k =0,1,...,p—1, where z is the

main p-th root of unity in C; these eigenvalues are all simple roots of the characteristic polynomial
of M.

2.4 Symbol periodicity

In this section we introduce the notion of z-periodicity for matrices in the semiring S[z] of polyno-
mials in the variable z with coefficients in S and focus more specifically on the case of irreducible
matrices. We still assume S to be positive.

2.4.1 The definition of z-periodicity

Given a polynomial F = Y, fyz* € S[z], we define the z-period of F as the integer d(F) =
GCD{|h — k| : fn # 0 # fr}, where we assume GCD({0}) = GCD(f)) = +oo. Observe that
d(F) = +oc0 if and only if F =0 or F is a monomial.

Now consider a matrix M : @ x @ — S[z]. For any index g € @ and for each integer n we set
d(g,n) = d(M",,) and we define the z-period of g as the integer d(q) = GCD {d(q,n) | » > 0},
assuming that any non-zero element in NU {+oo0} divides +00. Notice that if M is the a-counting
matrix of some linear representation, this definition implies that for every index ¢ and for every
pair of g-cycles C; and Cy of equal length, |C1|, — |C2|, is a multiple of d(q). More precisely, d(q)
is the GCD of the differences of number of occurrences of a in all pairs of g-cycles of equal length.

Proposition 2.13 If M is an irreducible matriz over S[x], then all indices have the same x-period.

Proof. Consider an arbitrary pair of indices p,q. By symmetry, it suffices to prove that d(p)
divides d(q), and this again can be proven by showing that d(p) divides d(g,n) for all n € N. As
M is irreducible, there exist two integers s,¢ such that M?®,, # 0 # M?,,. Then the polynomial
Mett,, =% M*, M*,, # 0and for some k € N there exists a monomial in M*+,, with exponent
k. Therefore, for every exponent h in M™,,, the integer h+k appears as an exponent in M5+t
This proves that d(p,n + s +t) divides d(g,n) and since d(p) divides d(p,n + s +1t), this establishes
the result. |

Definition 2.14 The z-period of an irreducible matriz over S[z] is the common x-period of its
indices.
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Example 2.15 We compute the z-period of the a-counting matrix M over B[z] associated with
the state diagram represented in Figure 2.3. Consider for instance state ¢; and let C; and Cs
be two arbitrary ¢;-cycles having the same length. Clearly they can be decomposed by using

the simple g;-cycles of the automaton, namely ¢, = g1 —> g4 —> q1, b2 = @1 BN g2 — g3 BN qi-
Hence, except for their order, C; and Cs only differ in the number of cycles ¢; and /5 they contain:
for k = 1,2, let s € Z be the difference between the number of /; contained in C; and the number
of ¢;, contained in Cy. Then, necessarily, s1|¢1| + s2|2] = 0, that is 2s; + 3sy, = 0. This implies
that s; = 3n and sy = —2n for some n € Z. Hence

|Cl|a - |CQ|,1 = 3n|£1|a - 2n|€2|a =6n—2n=4n .

This proves that 4 is a divisor of the z-period of M. Moreover, both the ¢;-cycles £;% and £,% have
length 6 and the numbers of occurrences of a differ exactly by 4. Hence, in this case, the z-period
of M is exactly 4. m|

S
h < ¢ M=
’

Figure 2.3: State diagram and a-counting matrix of Example 2.15.

8 = OO
O OO
oo 8 O©
SO O8

In the particular case where the entries of the matrix are all linear in x, the matrix decomposes
M = Az + B, where A and B are matrices over S; this clearly happens when M is the a-counting
matrix of some linear representation. If further M is primitive, the following proposition holds.

Proposition 2.16 Let A and B be matrices over S and set M = Ax + B. If M is primitive and
A # 0 # B, then the z-period of M is finite.

Proof. Let ¢ be an arbitrary index and consider the finite family of pairs {(n;, k;)};es such that
0 <k; <nj <m where m is the size of M and k; appears as an exponent in M"™ ;. Notice that
since M is irreducible J is not empty. Since every cycle can be decomposed into elementary cycles
all of which of length at most m, the result is proved once we show that d(¢) = +oc implies either
kj =0for all j € J or k; = n; for all j € J: in the first case we get A = 0 while in the second case
we have B = 0.

Because of equality M1Li% = (Arm)ILizi ™ the polynomial MILim q¢ contains the exponent
ki]l;z;n; for each i € J. Now, suppose by contradiction that d(g) is not finite. This means
that all exponents in MILi™  are equal to a unique integer h such that h = k; [] 21y for all
1 € J. Hence, h must be a multiple of the least common multiple of all products ]_fj i M- Now
we have LOM{[[; ,;n; | i € J} - GCD{n; | j € J} = [[;n; and by the primitivity hypothesis
GCD{n; | j € J} = 1 holds. Therefore h is a multiple of [[, n;. Thus the conditions k; < n; leave
the only possibilities k; = 0 for all j € J or k; =n; for all j € J. O

Observe that the previous theorem cannot be extended to the case when M is irreducible or
when M is a matrix over S[z] that cannot be written as Az + B for some matrices A and B over

S.
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Example 2.17 The matrix M with entries M7 = Msy = 0, M5 = x and Ms; =1 is irreducible
but it is not primitive since it has period 2. It is easy to see that the non-null entries of all its
powers are monomials, thus M has infinite z-period. m|

Example 2.18 Consider again Figure 2.3 and set M» 3 = 2°. Then we obtain a primitive matrix
over B[z] that cannot be written as Az + B and does not have finite z-period. O

2.4.2 Properties of z-periodic matrices

Given a positive integer d, consider the cyclic group Cq = {1,9,4>,...,9% 1} of order d and the
semiring By = (294, +,-) (which is also called B-algebra of the cyclic group) where 2¢¢ denotes
the family of all subsets of Cy and for every pair of subsets A, B of Cq we set A+ B=AUB
and A-B ={a-b|a€ Ab € B}; hence 0 is the unit of the sum and {1} is the unit of the
product. Now, given a positive semiring S, consider the map g4 : S[z] — By that associates any
polynomial F =Y, frz® € S[z] with the set {g* | fr # 0} € Ba. Note that since the semiring S
is positive @4 is a semiring morphism. Intuitively, ¢4 associates F' with the set of its exponents
modulo the integer d. Of course 4 extends to the semiring of @ x ()-matrices over S[z] by setting
@d(T)pg = pa(Tpg), for every matrix T : @ x Q — S[z] and all p,q € Q. Observe that, since ¢4 is
a morphism, ¢a(T)",, = ©a(T"),, = 0a(T"pq) -

Now, let M : @ x Q — S[z] be an irreducible matrix with finite z-period d. Simply by the
definition of d and ¢4, we have that for each n € N all non-empty entries q(M"),,, contains at
most 1 element. The following results also concern the powers of ¢4(M).

Proposition 2.19 Let M be an irreducible matriz over S[z] with finite z-period d. Then, for
each integer n and each pair of indices p and q, the set qa(M)™  contains at most one element;

pq
moreover, if ga(M),, # 0, then pa(M)™,, = (9a(M)gq)".

Proof. Let n be an arbitrary integer and p,q an arbitrary pair of indices. By the remarks above
we may assume p # g and M",, # 0. M being irreducible, there exists an integer ¢ such that
Mt,, # 0. Note that if B is a non—empty subset of Cy4, then |A-B| > |A| holds for each
A C Cyand pg(M)™ 2 pa(M)",, -pa(M)*,,. Therefore, since |pq(M)™** | <1, we have also
lpa(M)", | < 1. The second statement is proved in a similar way reasoning by induction on n. O

Proposition 2.20 Let M be an irreducible matriz over S[z] with finite z-period d. Then, for each
integer n, all non-empty diagonal elements of o(M)"™ are equal.

Proof. Let n be an arbitrary integer and let p, ¢ be an arbitrary pair of indices such that M",, #
0 # M"4q. By the previous proposition, there exist h, k such that p(M)" = {g"} and p(M)" =
{g*}. If t is defined as in the previous proof, then the two elements (M)’ -{g"} and {g*}-p(M)*
belong to p(M)iH" gps Since this subset contains only one element they must be equal and this
completes the proof. m|

Proposition 2.21 Let M be a primitive matriz over S[z] with finite z-period d. There exists an
integer 0 < v < d such that for each integer n and each index q, if M"qq # 0, then cpd(M)"qq =
{g"™}. Moreover, for each pair of indices p,q and for any integer n such that M™,, # 0, we have

wa (M",,) = {g"F%4} for a suitable integer 0 < &,, < d independent of n.
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Proof. Since M is primitive, there exists an integer ¢ such that M",, # 0 for every n > ¢ and for
every pair of indices p and ¢. In particular, since dt + 1 > ¢, we have |ps(M ¥+ )| = 1 for each q
and hence there exists 0 < v < d such that oq(M)%+! s = 197} Observe that v does not depend
on ¢, by Proposition 2.20. Therefore, by Proposition 2.19, we have

{97} = pa(M)¥™ 4" D pa(M)™™ - pa(M)" = {1} - pa(M)"

which proves the first part of the statement.

Now, consider an arbitrary pair of indices p,q and let ¢ be the smallest positive integer such
that M?t,, # 0 (the existence of such t is guaranteed by the primitivity of M). Then, for each
integer n, we have

0a(M)* - pa(M)" . C pa(M)™F = {g7" D)} .

Moreover, by Proposition 2.19 we know that there exists an exponent k such that ¢q(M)? w= {g"}.
This yields the result, by denoting by d,, the congruence class of vt — k modulo d.

If M is the a-counting matrix of a linear representation, then the previous propositions can
be interpreted by considering its state diagram. For any pair of states p, ¢, all paths of the same
length starting in p and ending in ¢ have the same number of occurrences of @ modulo d. Secondly,
if Cy, is a gg-cycle for kK = 1,2 and C; and C; have the same length, then they also have the same
number of occurrences of @ modulo d. Finally, if M is primitive, for each cycle £ we have |£|, = v|/|
modulo d for some integer v and moreover, for every pair of states p, g there exists a constant dp,
such that the number of @ in any path of length n from p to g is given by yn + dp,.

We conclude this section with an example showing that Proposition 2.21 cannot be extended
to the case when M is irreducible but not primitive.

Example 2.22 Consider the a-counting matrix M associated with the state diagram of Figure
2.4. Then M is irreducible with z-period 2, but it is not primitive since also its period equals 2.
Consider the path £ = q; — g2 %> q1. We have |¢| = 2 and |£|, = 1, hence for any -, v|¢| cannot
be equal to |¢|, modulo 2. Thus, Proposition 2.21 does not hold in this case.

/\ 012 00
£ 00 0 0

. M=|000 2 0
\/ 0000 z

£ 00 0 0

Figure 2.4: State diagram and matrix of Example 2.22.

2.4.3 Eigenvalues of z-periodic matrices

In this section we consider the semiring Ry of non—negative real numbers and we study the eigen-
values of primitive matrices M (z) over Ry [z] when z assumes the complex values z such that
|z| = 1. The next theorem shows how the eigenvalues of M (z) are related to the z-period of the
matrix. To this end we first give two auxiliary lemmata.

Lemma 2.23 Let M be an irreducible matriz over S[x] with finite z-period d. Then for every
index q there exist an integer n and two exponents h and k appearing in M"yq such that h—k = d.
If further M is primitive, then the property holds for every n large enough.
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Proof. Consider an arbitrary integer q. By the definition of d = d(q) there exists a finite set of
integers s; such that d = 3~ s;(r; — k;), where r; and k; are exponents appearing in M" 44 for
some integer n;. Observe that, since r; and k; can be exchanged, we may assume positive all
coefficients s;. Now set h = 3, s;r; and k = 3, sjk;. Then d = h — k holds and both h and k
are exponents in M",, where n = 3. s;n;. This proves the statement if M is irreducible.

If further M is primitive, then there exists an integer ¢ such that for each m > ¢, M™,, # 0
and hence M™ 4, has a non-null coefficient of degree I, for some / € N. Thus, h +1 and k 4 are
exponents that appear in M"™+t™ . for each integer m > ¢ and this completes the proof. a

In the sequel, |T'| denotes the matrix with pg-entry given by [T}/

Lemma 2.24 Let M (x) be a primitive matriz over Ry [x] with finite x-period d and set M = M (1).
Then, for every integer n large enough and for each z € C such that |z| =1, | M(2)"™ | = M™ if
and only if z is a d-th root of unity.

Proof. Given n € N and a pair of indices p, g, let M ()", = 23:1 f;z*i. By Proposition 2.19, all
the exponents ki, ks, . .., k; are congruent modulo d. Then, for every z € C we can write

l
M(2)",, =2 (f1 + ) fiz%)
j=2

where each s; = k; — ki is multiple of d, for j = 2,...,l. As a consequence, if z = e for some
k € Z, then M(2)", = z¥1 M",,; proving the result in one direction.

On the other hand, let n be an integer large enough to satisfy Lemma 2.23 for any index ¢
and consider some diagonal entry M (z)" = 2221 f;z*i. By the previous lemma we may assume
d = k2 — k1 and hence, setting s; = k; — k1 we have d = GCD{s; | j = 2,...,l}. Now assume
| M(2)",, |= 22; fr; = M"qq for some z = e with 0 < 6 < 2r. This implies that each s; is
multiple of 27 and hence for all j = 2,...,] we have

b _pi_h (2.2)

where p; € Z, s = LCM {s; | j = 2,...,1} and h < s is a non-negative integer. Since h is
multiple of each s/s; it is also multiple of s' = LCM {s/s; | j = 2,...,l}. Now, since GCD
{s; |7 =2,...,1} = d, we have that s’ = s/d. Thus, being § = 27h/s by (2.2), we have that 0 is a
multiple of 27 /d and hence z = €% is a d-th root of unity. |

Proposition 2.25 Let M(x) is a primitive matriz over Ry with x-period d and denote by ~y the
constant introduced in Proposition 2.21. If z is a d-th root of unity in C and v is an eigenvalue of
M, then vz" is an eigenvalue of M(z) with the same algebraic multiplicity.

Proof. The case d = 1 is trivial; thus suppose d > 1 and assume that z is a d—th root of unity.
Set T'= Ivz" — M(z) and T = Iv — M. We now verify that DetT = 27™ Det T holds where m is
the size of M. To prove this equality, recall that

Det T = Z(_l)a(p) H qu(q) .
p q9€Q

By Proposition 2.21, since z is a d-th root of 1 in C, we have T,y = (v — My,)2" = 27T, for
each state g and Tyyq, - Ty, _190 = 27° Tyoqu - - Ty,_1q, fOr each simple cycle (qo,q1,---,9s5—1,90)
of length s > 1. Therefore, for each permutation p, we get

H qu(q) =z""- H Typ(q)

q€Q q€Q
which concludes the proof. a
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Theorem 2.26 Let M(zx) be a primitive matriz over Ry [z] with finite z-period d, set M = M (1)
and let X\ be the Perron-Frobenius eigenvalue of M. Then, for all z € C with |z| = 1, the following
conditions are equivalent:

1. M(z) and M have the same set of moduli of eigenvalues;

2. If \(2) is an eigenvalue of mazimum modulus of M(2), then |\(2)| = A;

3. z is a d-th root of unity in C.

Proof. Clearly condition 1) implies condition 2). To prove that condition 2) implies condition 3)
we reason by contradiction, that is we assume that z is not a d-th root of unity. By Lemma 2.24 in
this case there exists an integer n such that | M (z)™ |# M™. Therefore we can apply Proposition
2.11 and prove that A™ is greater than the modulus of any eigenvalue of M (z)™. In particular we
have A" > |A(z)|™ which contradicts the hypotheses. Finally condition 3) implies condition 1) as
a consequence of Proposition 2.25. m|

Example 2.27 Let us consider again the primitive matrix of Figure 1.2. We recall that here
d = 4; moreover it is easy to see that v = 3. Indeed, for each k = 1,2, we have that || — 3|lk|q
is equal to 0 modulo 4. Now consider the characteristic polynomial of the matrix M (z), given by
Xz(y) = y* — y?x? — yz and let v be a root of x;. This implies that x; (v) = v* —v? — v =0 and
hence —iv is a root of the polynomial y;, —v is a root of the polynomial x_; and iv is a root of
the polynomial y_;. This is consistent with Theorem 2.26, since 1, i, —1 and —i are the fourth

roots of unity. m|

2.5 Notations on matrix functions

We conclude this chapter with some general notations on matrix functions. Assume that A(z) is a
square matrix whose entries are complex functions in the variable x. The derivative of A(z) with
respect of x is the matrix D, A(x) = [A'(x);;] of its derivatives. Thus, if A(z) and B(z) are square
matrices of the same size, then the following identities can be easily proved:

Dy (A(z) - B(z)) = DiA(z)-B(z) + A(z) - Do B(x) , (2.3)
Dy (A(2)") = ZA(w)i_l-DzA(w)-A(w)"_i,

Do(A(x)™Y) = —A(x) ' D,A(z)- Az) L. (2.4)

Moreover, the traditional big-O notation can be extended to matrix functions: let A(zx) be
defined in an open domain E C C, let g(x) be a complex function also defined in E and let xg
be an accumulation point of E; as z tends to zg in E, we write A(z) = O(g(x)) to mean that for
every pair of indices 4, j, A(z)i; = O(g(x)), namely there exists a positive constant ¢ such that for

every x in E near xg
[A(z)i] < clg(z)] -
Note that, if the entries of A(x) are analytic at a point zo € E, then
A(z) = A(zo) + A'(z0)(z — 20) + O ((z — 20)?) .
Further, if some entries of A(x) have a pole of degree 1 at a point zg in the boundary of E while
the others (if any) are analytic at the same point, then
R
A(z) = +S+0(z — o)

r — X

for suitable matrices R and S (R # 0).
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Chapter 3

Limit theorems in probability theory

This chapter concerns probability theory, and in particular it focuses on central and local limit
theorems for sequences of random variables.

In first section we recall some basic notions and present some typical examples of probability
distributions. In Section 3.4 we consider a sequence of Bernoulli trials, that is one of the most
classical scheme in probability theory. In particular we focus on DeMoivre-Laplace limit theorems
and their extensions to partial sums of more general sequences of random variables. In Section 3.5
we present the Markov processes, which can be seen as generalizations of the Bernoulli scheme.
In the last part of the chapter, we take into consideration a general sequence of discrete random
variables, without assuming any condition of independence, and we present two criteria to establish
central and local limit properties: in Section 3.6 we state the “quasi-power theorem” which provides
an useful approach to prove convergence in distributions, while in Section 3.7 we prove a general
criterion that guarantees the existence of a local convergence property of a Gaussian type in the
sense of Local DeMoivre-Laplace Theorem. In Part II, using such criterion, we show that the same
local convergence property holds for certain pattern statistics.

3.1 Probability spaces and random variables

Given a set 2, a o-algebra D is a non-empty collections of subsets of {2 such that: the empty set
is in D; if D is in D, then its complement D¢ is in D; if {D,}, is a sequence of elements in D,
then U,D,, is in D. The pair (2,D) is called a measurable space and any set in D is said to be
measurable. Moreover, a function f : 0 — R is called measurable if, for every real number z, the
set {a € Q| f(a) > x} is measurable.

A probability measure on (2, D) is defined as a nonnegative real function P : D — R such that
P(@) =0, P(Q) =1 and, if {D,}, is a finite or countable collection of pairwise disjoint sets in D
and D = U,D,, then P(D) =" P(D,). The triple (2, D, P) is called a probability space on the
domain €, which alone is defined sample space. The elements in D are called sample points and
the sets in D are also called events.

As an example, consider a countable set Q and let 2 denote the power set of Q. For each a € Q
let P(a) be a nonnegative real value such that ) ., P(a) = 1. Finally, for any subset D C § set
P(D) =Y ,cp P(a). Then, (2,29, P) turns out to be a probability space, and (2, P) is usually
called discrete sample space.

Given a probability space (2, D, P), take two arbitrary events D and E € D. If P(E) # 0, we
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define conditional probability of D given E the value
P(DNE)

P(E)
By symmetry, it is clear that P(D N E) = P(D|E) - P(E) = P(E|D) - P(D). For a fixed event
D, the function Pp : D — R such that Pp(E) = P(E|D) for any E € D satisfies the axioms of
probability measure. For this reason, the expression conditional probability makes sense.

P(D|E) =

Given a probability space (Q,D, P), a random wvariable (abbreviated “r.v.”) is a measurable
function X : @ — R. For any real z, the set {a € Q | X(a) < z} is simply denoted by {X < z}
and we also write P {X < z} to indicate the real value P ({a € Q| X(a) < z}). With obvious
meanings, this notation extends to expressions like {a € | X(a) = z}, {a € Q| X(a) < z} and
similar ones.

We say that the r.v.’s X1, Xs,... X, are independent if

P{X1 <21,X2 <@2,... Xy <@} = P{X1 <21} - P{Xo <o} - P{X, <3}

holds for all real values x;,i=1,2,...,n.
The (cumulative) distribution function Fx of a r.v. X describes the probability that X takes
on a value less than or equal to a real number z. More formally, Fx : R — [0, 1] is defined by

Fx(z) =P {X <z}.

Note that the distribution function is well-defined for any r.v. X, since the set {X < =z} is
always measurable by definition. Moreover, Fx is non-decreasing, right continuous, and we have
limg——ooFx (x) =0, limy— 1 o Fx (z) = 1.

A r.v. X is said to be discrete if X takes on values in a countable set {1, 22, ...}. In this case,
the values z; are called mass points and the function fx : R = Ry such that

| P{X =z} fez==z;j=12,...
e ={ g tare,

is called probability function or discrete density function of X. The distribution function of a
discrete r.v. is also called discrete. We remark that if X is a discrete r.v., then Fx can be derived
from fx and viceversa.

On the contrary, a r.v. X is called continuous if there exists a function fx such that for every
real  we have

Fy(2) =[ fx(y) do .

The function fx (z) is termed the (probability) density function of X. If X is continuous, then its
distribution is differentiable almost everywhere in R, or P{x € R|Fx is not differentiable in 2} =
0. As in the discrete case, Fx can be derived from fx and viceversa. In particular we have
dFx (z)/dz = fx(z) almost everywhere. Moreover, fx(z) > 0 for every real z and fjocf fx(z) de =
1. In general, if a function f satisfies this two properties, we call it a density function. If fx admits
a unique local maximum point z, then fx is said to be unimodal.

3.2 Moments and characteristic function

Let X be ar.v. and consider a function g : R — R. We call ezpectation of g(X) the value E(g(X))
defined as follows: if X is discrete with mass points 1, zs, ..., then

E(9(X)) =Y g(z;) fx () ;
j
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if X is continuous, then .
Bo(X) = [ g@)x(z)ds
— 00
provided (in both cases) that the right hand side converges. Clearly, E(c) = ¢ for each constant
¢; moreover the expectation is linear, that is E(cy g1(X) + c2g92(X)) = c1E(g1 (X)) + caE(g2 (X)).
One should also notice that the expectation is referred to the density function fx and it could be
defined without reference to the r.v. X.

The moments of a r.v. X are the expectation values of the powers of X. More precisely, we
define moment of order r the value u, = E(X"), if it exists. Observe that if X can take on values
only in a finite set, then the moments are always well-defined. The moment E(X) of order 1 is
called mean of X and it is denoted by ux. Thus, if X is discrete we have

px =E(X) = ijfx(xj)

while, if X is continuous, then
+oo

ux = E(X) =/ zfx(z)dz .

—0o0

The central moments are defined by u, = E((X —E(X))"). It is easy to see that y; = 0 and
p2 = E((X - px)?) = E(X?) — (E(X))* .

Such a value ps is called the variance of X and is also denoted Var(X). The standard deviation
of X is the square root of the variance and it is usually denoted by o.

Given a r.v. X with density function fx, set
Tx(2) = E(e*X)

for every complex z such that E(e*X ) exists. Wherever ¥ x exists, it is continuously differentiable
in a neighbourhood of t = 0 and its r-th derivative satisfies the following relation

A

—(0) = E(X"

—(0) = B(X")

which holds both in the continuous and in the discrete case. Thus, the moments of a distribution
can be obtained from the function ¥x which is named moment generating function of X just from
this fact. In particular, we have

E(X) =9%(0), E(X?) =9%(0). (3.1)

It should be emphasized that, even though the distribution of a r.v. is not uniquely specified
by its moments, it is uniquely specified by its moment generating function, Indeed, the following
theorem holds.

Theorem 3.1 If X andY are two r.v.’s such that ¥ x (z) and Py (2) ezist and are equal at |z| < h,
for some h > 0, then the distribution functions Fx and Fy also coincide.

The restriction Ux(if), for § € R, is called the characteristic function of X. Observe that
U x (16) is well-defined for very real 6 and it completely characterizes the distribution of X, thanks
to the previous theorem. Moreover, if X takes on values in N, then ¥ x (46) is periodic in 6 of period
2m and assumes the value 1 at § = 0. We finally remark that the moment generating function
and the characteristic function can be defined by means of the Laplace and Fourier Transform,
respectively (see [11]).
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3.3 Examples of distribution laws

Here we briefly present some typical examples of distribution laws, either discrete or continuous,
we will use in the sequel. We just focus on the distributions, thus we do not refer to any specific
probability space or r.v., but to the family of all r.v.’s that obey to the given probabilistic law.
Some authors use the term wariate to refer to such a family.

Let us first describe some discrete distributions.

Discrete uniform distribution. The discrete uniform distribution of parameter N is character-
ized by the following density function

(1N ifz=1,2---N
fn(@) = { 0 otherwise

The discrete uniform distribution is also known as the equally likely outcomes distribution.

Bernoulli distribution. The Bernoulli distribution is typical of a Bernoulli trial, that can be
seen as a simple performance of a well-define experiment (as, for instance, the flipping of
a coin) having two possible outcomes 0 and 1, in which 1 (success) occurs with probability
p and 0 (failure) occurs with probability g, where ¢ = 1 — p. Therefore, it is a discrete
distribution having probability function

P ifz=1
fplz)=X 1—p ifz=0
0 otherwise

If X has a Bernoulli distribution, then E(X) = p, Var(X) = p(1 — p) and the moment
generating function is given by Ux(z) =1 — p + pe*.

Binomial distribution. The binomial distribution gives the discrete probability distribution of
obtaining exactly m successes out of n independent Bernoulli trials (where the result of each
Bernoulli trial is true with probability p and false with probability 1 — p). The binomial
distribution is therefore characterized by the following probability function

n) T _ n—z _
_ [ O)p*1-p) ifr=0,1,...,n
fnp(®@) = { 0 otherwise

Notice that for n = 1 we obtain the Bernoulli distribution. If X has a binomial distribution,
then E(X) = p(1 — p), Var(X) = np(l — p) and the moment generating function is given by
Tx(2) = (1—p+pe*)".

Geometric distribution. The geometric distribution (or Pascal distribution) of parameter 0 <
p <1 is characterized by the following density function

[ pg® fzx=0,1,...
fol@) = { 0 otherwise

where ¢ = 1 — p. Then, the distribution function is F,(z) =1 —¢""! forn <z <n+ 1. If
the r.v. X has geometric distribution, then E(X) = ¢/p, Var(X) = ¢/p? and the moment
generating function is given by ¥x(z) = p/(1 — ge?).

We now proceed with some examples of continuous distributions.
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Uniform distribution. A uniform distribution, sometimes also called rectangular, is a distribu-
tion that has constant density function over a real interval (a,b). More precisely, the density
function and distribution function for a continuous uniform distribution on the interval (a, b)

are 1 f
— ifa<x<b
f(a’b)(x) - { 8 ‘ otherwise
and
0 fr<a
Flape(m)=¢ =2 fa<z<b
1 ifz>0b

If the r.v. X has uniform distribution in the interval (a, b), then E(X) = (a+b)/2, Var(X) =

bz_ az

(b—a)?/12 and the moment generating function is given by ¥ (44 (2) = (=OER

Triangular distribution. The triangular distribution defined over the interval [a,b] with mode
¢ € [a,b] is a continuous distribution with probability density function

Ae—a)  jfg<p<e

=) G-a(ca)
fiap,0)(2) { % ifc<z<b

We have

_=-a)® . <z<ec
Flap(@) =

(b—a)(c_a)
(b_baf)% ife S x S b

and the mean is (a + b+ ¢)/3.

Normal distribution. A normal distribution with parameters y and o > 0 (also called Gaussian
and denoted by N(u, o)) is characterized by the following density function

IN o) (@) = e €5
= 20
N(p,0) /oo

for £ € (—o0, +00). The values p and o2 turn out to be the mean value and the variance of
the distribution, respectively. The corresponding moment generating function is

lI;N(p,o) (Z) —e uz+g2zz ‘

The so-called standard normal distribution is obtained taking p = 0 and ¢ = 1; its density
function and moment generating functions are then given by

1
Inon = 7= ¢ 2 and  Unga) =€

2/2‘

Finally observe that a general normal distribution X can always be converted to a standard
normal distribution X by changing variables to Z = (X — u)/o.

3.4 Bernoulli trials and DeMoivre—Laplace Theorems
Let us now take into consideration one of the most classical scheme in probability theory, that of

a sequence of independent Bernoulli trials, following the setting-out used in [28, Chapter II]. In
the usual setting, one performs a sequence of repeated Bernoulli trials with success probability p,
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which does not depend on the number of the trial. Such a scheme deserves special interest because
of its historical reason and since the laws that rule the behaviour of repeated Bernoulli trials can be
generalized to the study of sequences of independent trials with more than two possible outcomes.

Notice that such scheme can be used to generate random word of given length n, over the
alphabet whose letter are the possible outcomes. That is, the word generated by the Bernoulli
model is the sequence of outcomes from the first trial to the n-th one.

The simplest problem concerning a Bernoulli scheme consists in the determination of the prob-
ability P, (m) of having m successes in n trials and n —m failures in the remaining ones. As stated
in the previous section, such probability is given by ()p™¢™ ™, where ¢ = 1 — p is the failure
probability. Thus, we get the binomial probability distribution law.

The computation of P, (m) for large values of n and m is rather complicated. Thus, asymptotic
formulas that would enable one to determine these probabilities to a sufficient degree of accuracy
are necessary. A formula of this kind was first discovered by DeMoivre in 1730 for p = ¢ = 1/2 and
was subsequently generalized by Laplace in the case of arbitrary p € (0,1). Intuitively, this formula
states that, up to a factor ©(y/n), the probability of having m success in n trials approximates a
Gaussian density at m.

n—m

Theorem 3.2 (Local DeMoivre-Laplace Theorem) If the probability of occurrence of some
event A in n independent trials is constant and equal to p (0 < p < 1), then the probability P,,(n)
that the event A occurs exactly m times in these trials satisfies the relation

2 P,
lim Y2724 Pa(m) _ |
n—00 _ (m=np)

e 2npq

uniformly with respect to all m such that the values (m — np)/,/npq are contained in some finite
real interval.

The previous theorem allows one to establish another limit relation of probability theory, known
as central or integral limit theorem, which establishes a weaker property concerning the limit dis-
tribution of the sequence of independent trials.

Theorem 3.3 (Integral DeMoivre—Laplace Theorem) If m is the number of occurrences of
an event in n independent trials in each of which the probability of this event is p (0 < p < 1),

then the relation )
. m —np 1 / —22/2
lim P{a< <bp=—— e % /dx 3.2

n=0 { Vnpg } NP2 (32)

holds uniformly in (a,b), for a,b € R.

We just notice that the law of large numbers (stating that X, /n converges to p) can be proved
as a special application of the Integral Theorem of DeMoivre-Laplace stated above. However,
this theorem is much more general than the law of large number, since it really provides the limit
distribution of (m — np)/,/npq.

The Integral DeMoivre-Laplace Theorem has served as a basis for a large group of investigations
both in the theory of probability and in its numerous applications to natural sciences, engineering
and economics. Indeed, notice that equation (3.2) can be also written as

Y R(X b,
limP{aSS 2= k)<b}:\/i2_7r /a e " 2dx (3.3)

n—0 arS,

where X}, denotes the r.v. representing the k-th trial and S,, = Y_)_, X} represents the repetition
of n independent trials. Thus, the following question naturally arises: is relation (3.3) intrinsically
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connected to the special choice of the r.v.’s X or would it also hold if weaker restrictions were
imposed on the distribution functions of this summands? The answer to this question is contained
in a number of theorems which go by the generic name of central limit theorem. Such theorems
usually state that it is merely necessary to impose a very general restriction on the r.v.’s, whose
meaning is that the individual terms have a negligible effect on the sum. Analogous generaliza-
tions hold for the Local DeMoivre-Laplace Theorem, (they are usually referred to as local limit
theorems). Clearly, being local limit theorems much stronger, their existence also implies that
corresponding central limit theorems hold. For precise results, see [28, Chapter VIII].

3.5 Markov chains

An immediate generalization of the scheme of independent trials is given by the so-called Markov
chains. This kind of stochastic process is named after the famous Russian mathematician who
first investigated their properties. Here we just recall basic elements of the theory; a complete
treatment can be found for instance in [54, 41].

Let us consider a sequence of trials and assume that in the ¢-th trial, represented by the r.v.
X, one of the mutually exclusive events A, Ay, - - - A, may be realized. We say that the sequence
of trials forms a (simple) Markov chain if, for any ¢ = 1,2,...,n and ¢t = 1,2, ..., the conditional
probability of occurrence of the event A; in the (¢ + 1)-th trial, given that a known event has
occurred in the ¢-th trial, only depends on which event has occurred in the ¢-th trial. In other
terms, such a conditional probability is not affected by the further information concerning the
events that have occurred in the earlier trials.

Notice that, as for the Bernoulli scheme, Markov processes can also be used to generate random
words over the alphabet consisting of all possible outcomes.

A different terminology is often used. Indeed, Markov chains serve as theoretical models for
describing a system which can be in one of the states of 4 = A;, Ay,--- A,, and which jumps at
unit intervals from one state to another according to the following probability law: if the system
is in state A; at time t — 1, the next jump takes it to the state A; with transition probability
T;;(t) = P{Xy = A | X¢—1 = A;}. The set of values Tj;(t) is prescribed for all 4,j,¢ and
determines the probabilistic behaviour of the system, once it is known how it starts off at time 0.
The fundamental property of Markov chains states that if Eg, Ey,... Eyy1 are elements of A and
P{Xt =F, Xi 1=FE; 1,..., X0 = Eo} > 0, then

P{Xiy1 =En|Xi =By, Xy 1 =FEy,...,Xo=Ey} = P{X41 = B 1| Xy = By}

This property express, roughly, that future probabilistic evolution of the process is determined
once the immediate past is knows.

Let IIp denote the vector of initial probabilities P{Xo = A;}, for i = 1,2,...n. Then, the
probabilistic structure of a Markov chain is completely determined by the initial probability distri-
bution Iy and the transition matrices T(¢t) = (T3;(t)) at time ¢t = 1,2,.... Indeed, the probability
function of X; is given by the vector II; defined as

I, =M, -T(1)---T(t) . (3.4)

Also notice that for any ¢, T'(t) is a square non-negative matrix such that its row sum equal 1. For
this reason, T'(t) is said to be stochastic.

IET(1)=T(2)=...=T(t) = ..., then we say that the Markov chain is homogeneous. In this
case, we shall refer to the common transition matrix as the transition matrix and denote it by T';
moreover, recalling the definitions of Section 2.2, the Markov chain is called irreducible, primitive
or periodic if P is of this sort. Then, relation (3.4) clearly simplifies to

Ht:HO'Tt;
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furthermore, for any ¢t > h, we have II; = II,-T"~t, that is the probability evolution is homogeneous
in reference to any initial time h.

Given an homogeneous Markov chain, an initial probability distribution Il is said to be sta-
tionary if for every t = 1,2,... one has IIy = II;. If a Markov chain is irreducible, then it is easy
to see that it has a unique stationary distribution given by the solution v of v, T =v,, v, -1 =1
(where 1 is the vector with 1 in each component). Hence, applying the Perron—Frobenius Theorem,
one obtains the following result.

Theorem 3.4 (Ergodic theorem for primitive Markov chains) Let T be the transition ma-
triz of a primitive homogeneous Markov chain. Then
. t _ .
tlggoT =1-vr

elementwise, where v is the unique stationary distribution of the chain; the rate of approach to the
limit is geometric.

Let us now focus our attention on sequences of trials with two possible outcomes, in each of
which the event E¥ may or may not occur, and assume that the trials are connected in a homogeneous
Markov chain. Let o be the probability of the event E occurring at time (¢ + 1) and let 8 be the
probability of the event E occurring at time (¢ + 1) given that E has not occurred at time t; Also
assume « and 3 to be different from 0 and 1 and set § = o — 3. Thus, the transition matrix is

given by
(a 1—a)
g 1-8 )"

Clearly, such a scheme generalizes the Bernoulli scheme considered in the previous section. Now,
let p; denote the probability of occurrence of E in the ¢-th trial and set ¢ = 1 —p;. It is immediate
to see that py = a pt—1 + f ¢t—1 = 0 pr—1 + B. Thus, as ¢ goes to infinity, we have p, — 3/(1 — 9).
On the other hand, if pj(i) denotes the probability of the event E in the j-th trial knowing that it
occurred in the i-th trial, then we get pj(i) =0 pj_l(i) + B for all j > i+ 1.

Now consider the probability P, (m) to find m occurrences of E in n trials. One can prove that

_ 6722/2
- \/2mnpg(1+6)/(1 —0)

as n — 00, which extends the local DeMoivre-Laplace theorem for Bernoulli trials. An integral
limit theorem may also be derived. Indeed the relation

Pla< o TP <b z/e_”“'/zdm
V2mnpg(1+6)/(1 - 0) a

holds uniformly as n goes to infinity.

Pn(m) -(1+0(1))

3.6 Quasi-power theorem

Consider a sequence of r.v.’s {X,,}, having distribution functions {Fx, }, and a r.v. X having
distribution function Fx. If lim,,_,o, Fx, (1) = Fx(7) for every point 7 € R of continuity for Fx,
then one says that X,, converges to X in distribution (or in law). Actually, this is an abuse of
terminology, since this convergence concept is not referred to the r.v’s, but to their distribution
functions.
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The moment generating functions are an useful tool to prove convergence in law. Indeed, by
Theorem 3.1, if {T x, },, and ¥x are defined all over C and ¥x, (z) tends to ¥ x(z) for every 6 € C,
then X, converges to X in distribution.

The Integral Theorem of DeMoivre-Laplace establishes the convergence in distribution of the
sum of independent Bernoulli trials to a Gaussian r.v. Here we present another convenient approach
to prove the convergence in law to a Gaussian r.v. It relies on the so called “quasi-power” theorems
introduced in [38] and implicitly used in the previous literature [3] (see also [23]). The main
advantage of this theorem, with respect to other classical statements of this kind, is that it does
not require any condition of independence concerning the r.v.’s X,,. For instance, the Integral
Theorem of DeMoivre—Laplace assume that each X, is a partial sum of a sequence of independent
r.v.’s.

For our purpose here we present a simple variant of such theorem and we also prove an inter-
esting property to be applied to pattern statistics in Part II.

Theorem 3.5 (Quasi-power Theorem) Let {X,,} be a sequence of r.v.’s, where each X,, takes
values in {0,1,...,n} and let us assume the following conditions:

C1 There exist two functions u(z), h(z), both analytic at z = 0 where they take the value u(0) =
h(0) =1, and a positive constant ¢, such that for every |z| < c

Ux,(2) = h(z) -u(z)" (1+ O(n™")); (3.5)

C2 The constant o = u'"(0) — (u'(0))? is strictly positive (variability condition).

Also set up =u'(0). Then X\"/%"‘ converges in distribution to a normal r.v. of mean 0 and variance
1, i.e. for every x € R

Mq} _ L/ 2
von T B V2T J o '

Proof. We argue as in [3]. Let ¥,(2) be the moment generating function L\/ai:l Then it suffices

lim P{

n—-+oo

to prove that, as n goes to infinity, ¥,(z) tends to the moment generating function of the standard
normal distribution, i.e. €* /2. First note that

T,(2) =E (ea:p (%z)) = exp (—zu\/g) T, (\/%) :

This implies, by condition C1, that

T, (2) = exp (—zu\/g) h (\/%) exp (n -log u (\/Z_n» . (3.6)

Now, as n tends to infinity, z/y/on goes to 0 and in a neighbourhood of z = 0 we have
h(z) = 1+40(2)

! 1 " 2 3 O'—I—/I,Q 2 3
u(z) = 1+u(0)z+§u (02 +0(z°) = 1+ pz + —5 7 + 0(2%)
the last equation implying

log(u(z)) = pz + gzz +0(2%) .

Replacing the previous equations into (3.6), we get

U,(z) = (1 + %) - exp (z2_2> +0 (%)

which pointwise converges to e* /% asn goes to infinity. O
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Proposition 3.6 Let {X,} be a sequence of r.v.’s such that each X, takes values in the set
{0,1,...,n}. Assume that conditions C1 and C2 of Theorem 3.5 hold and let u(z) , p and o be
defined consequently. Then, for every real 6 such that 8] < n %12 | asn grows to infinity, we

have
=0 (nil/z) .

Proof. First of all observe that, from our hypotheses, in a neighbourhood of z = 0 we have

u(za)n —e (0/2)0*n+iudn

2
u(z) = 14+ pe+ THE 22 4 0(2) (3.7)

This implies that, in a real neighbourhood of € = 0 , the complex function u(if) satisfies the
equalities

2
lu(i9)] = ‘HM—%W 1+0(6%) =
2 2
= \/(1_%92) + 4262 - |1+ O(6%)] =
iy 4 3
= (1—59 +0(6 ))|1+0(9)|, (3.8)
2
arg(u(if)) = arg (1 +iud — a-;p 02) + arg(1 + 0(6%)) =

arctg (1“79> +0(6%) = b + 0(6%) .

— L-Slﬁm
As a consequence, one has
u(if)" = (1 _ (0/2)92 + 0(93))n _em(ua+0(03)) — ¢ (0/2)n6°+iund _en0(93) )
Now, for each |] < n%/'2 | we have [n6?| = O (n~'/*) and the last expression yields
u(if)" = e~ (/DI Hind (1 4 O(nh%)) .

Therefore
u(if)™ — e—(a/Z)n92+z’un0

=0 (n|03|e_"92"/2) =0 (n_l/Z) ,

the last equality being obtained by deriving with respect to 6. O

3.7 A general criterion for local convergence laws

Convergence in law of a sequence of r.v.’s {X,,} does not yield an approximation of the probability
that X,, has a specific value. On the other hand, in Section 3.4 we state that, when X, is the
partial sum of a sequence of r.v.’s, approximations to the Gaussian density are provided by local
limit theorems.

Let us now present a general criterion that guarantees, for a general sequence of discrete r.v.’s,
the existence of a local convergence property of a Gaussian type more general than DeMoivre—
Laplace’s Theorem mentioned above. In Part II, using such criterion, we show that the same local
convergence property holds for certain pattern statistics.
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Theorem 3.7 (Local Limit Criterion) Let {X,} be a sequence of r.v.’s such that, for some
integer d > 1 and every n > d, X, takes on values only in the set

{r eN|0<z<n,z = p(mod d)} (3.9)

for some integer 0 < p < d. Assume that conditions C1 and C2 of Theorem 3.5 hold and let p and
o be the positive constants defined in the same theorem. Moreover assume the following property:

C38 For all0 < 6y <m/d lim <v/n sup |¥x, (i) =0.
noteo 16/€[60,7/d]
Then, as n grows to +oo the following relation holds uniformly for every j =0,1,...,n.
_ i—pn)?
o T (toV))  ifj=p (modd)
P{X, =j}= V2mon (3.10)
0 otherwise

Recall that ¥ x_ (i) is the characteristic function of X,,. The condition C3 states that, for every
constant 0 < §y < m/d, as n grows to +oo, the value ¥y, (i) is of the order o(n~1/2) uniformly
with respect to 6 € [—w/d, —80] U [6o, 7/d]. Note that p may depend on n even if p = O(1).

One can easily show that any sequence {X,} of binomial r.v.’s of parameters n and p, where
0 < p < 1 (i.e. representing the number of successes over n independent trials of probability p),
satisfy the hypotheses of the theorem with d = 1. In this case, equation (3.10) coincides with the
property stated in DeMoivre-Laplace Local Limit Theorem. Thus our general criterion includes
the same theorem as a special case.

Relations like (3.10) already appeared in the literature. In particular in [28, Section 43|, (3.10)
is proved when X,, is the sum of n independent lattice r.v.’s of period d and equal distribution.
Note that our theorem is quite general since it does not require any condition of independence of
the X,,’s.

We also note that, for d = 1 a similar criterion for local limit laws has been proposed in
[23, Theorem 9.10] where, however, a different condition is assumed, i.e. one requires that the
probability generating function p,(u) of X, has a certain expansion, for u € C belonging to an
annulus 1 —e <|u| <1+¢ (g>0), that corresponds to assuming an equation of the form (3.5)
for z € C such that |Re(z)| < § (for some § > 0).

Before illustrating the proof of the criterion, let us prove the following lemma concerning the
characteristic function of the r.v.X,,.

Lemma 3.8 Under the hypotheses of Theorem 3.7, for every real 0 such that |6| € [0, 7/d] we have
‘\IIX.,, (10) _ 87(0/2)02n+1ﬂ0’n — An(a) ,
where

O(n=°/1%) if |6] € [0,n"5/1%]

An(0) = { 0(n—1/2) if|6] € [n_5/12,7r/d] (3.11)

Proof. For the sake of brevity let ¥,, stand for ¥x . Let us consider the first interval given in
(3.11), i.e. the case || < n~®/12. By condition C1 of Theorem 3.5 and Proposition 3.6 we have

(i) = h(i6) - u(i®)" (1+O0(n 1)) = (e @/APmHiutn 4 O(n"1/2)) (14 O(n~¥/12))

which proves the relation since |e~(7/2)6°n+infn| < 1 for every real §.
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Referring to the second interval, let §; be a constant such that 0 < 8y < ¢, where ¢ is defined
as in condition C1 of Theorem 3.5 and assume |8] € [n=5/12,6,]. Then we have

‘I’n(le) _ 67(0/2)92n+z’u0n < |lI’n(’La)| +e—(a/2)02n‘

Since |6] > n~5/12, the second term of the right hand side is smaller than or equal to e~(@/2n"/® =

o(n~1/?). Let us show an analogous bound for the first term. To this end, by equations (3.5) and
(3.8) we have

|T,,(i0)| = |h@0) - u@@®)™ (1+O0m~Y)| < h‘l—%02+O(03)‘n|1+0(n_1)| (3.12)

where h = supjg|<g, |h(i)| . By the arbitrariness of 6 , for some constant ¢ > 0 and every || < 6o

we have o o
‘1 - 26 +0(03)‘ < ‘1 - 592‘ +et® .

By the same reason we may assume 6y < min{+/2/0, o/(4¢)}, which proves
‘1 _ 2 4 0(03)‘ <1-26% 40062 <1- %92,
2 2 4
for every |6] < 6. Replacing this value in (3.12) we get
|9a(0)] = O (11 = (0/4)6%[") = O (e~ /7" |

which is again bounded by o(n~'/?) because of the range of §. This proves relation (3.11) for
8] € [n5/12,6,).
Finally assume 6y < |8| < w/d . Again, we have

U, (i) — e (0/2)0°ntipbn| o sup  |¥,(i0)| + e (0/2)0n

00<|0|<m/d

The first term is bounded by o(n~'/2) by condition C3, while the second one is O (") for some
7 € (0,1) and this completes the proof. O

The proof of Theorem 3.7 is based on the application of the discrete Fourier transform. Here
we recall its definition, for more details see for instance [11]. For any positive integer n, the
n-th discrete Fourier transform is the transformation D,, : C* — C" such that, for every u =
(ug, -+ yupn—1) € C*, Dp(u) = (vg,- - ,Vn—1) Where

27sk

n—1
(Dn(u), =vs = Zei U
k=0

for each s = 0,1,...n — 1. It is well-known that D,, admits an inverse transformation D, ! defined
by setting for each k. =0,1,...n—1

Now we are able to present the proof of the criterion for the local convergence.

41



Proof of Theorem 3.7. First, we apply the Discrete Fourier Transform (see for instance [11])

to the array of probabilities of X,,. Since each X,, assumes values only in (3.9), set N = min{h €
(n) , (n) ()

N | n < p+ hd} and define p(™ as the array (py”,p;",---,Pn",), where
p =P{X,=p+hd} (h=0,1,...,N—1).

Let f(") € CN be its Discrete Fourier Transform, i.e. the array of values fs(") such that

N-1
_ (n) j2msp ,27TS __;2msp
i = ’?:0 py etV =Ty, <ZN—d> et nd

where s = —[N/2]+1,—[N/2]+2,...,|N/2|. By antitransforming, each p%") can be obtained by

( ) 1 LN /2] (n) 2 1 LN/2] 21s 2 ( )

n) _ n) ,—i=g*h _ : —i5F7 (p+hd

=5 Y e =S 3w, (z Nd) e INElothd), (3.13)
s=—[N/2]+1 s=—[N/2]+1

Now, the previous lemma suggests us to define the function F,(§) = e—(?/ 2)0%ntindn  fo; every

—7m/d < 8 <m/d and to approximate p%") with the following values

1 A 2ms\
weg Y m(f)een. .
s=—[N/2]+1

Clearly, the error associated with the above approximation satisfies the inequality

(n) (n) 1 e 27s 27s 1 Rl 2ms

n AN .

‘Ph —pp | < ~ E ¥x, <l_.7‘7d> —Fu (_Nd>‘ < N E An (_Nd) ;
s==[N/2]+1 s==[N/21+1

which can be computed by splitting the range of s in two intervals as in (3.11). Thus, we get

(n) _ 5(n)
12 h

5 < %{[Nd/(zvrn5/12)10(n_5/12)+ [N/ﬂo(n_l/z)} =0(n—1/2) . (3.15)

lp

As n grows to 400 the right hand side of (3.14) tends to the integral of F},(z) e~(+hd) q/(2x)
over the interval x € (—w/d,w/d). Thus, by standard mathematical tools, one can prove that as
n grows to +oo the relation

p (p+ hd — pn)?
A(n) _ - 2 —1/2
=——e¢ on +o(n
Pr V2mon ( )
holds uniformly for every h = 0,1,..., N — 1. Hence, the result is a straightforward consequence
of the previous equation, together with relation (3.15). |
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Part 11

Pattern statistics in rational models
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Chapter 4

Rational stochastic models: the
primitive case

In this chapter we start off the discussion concerning pattern statistics in rational models. First,
we introduce the frequency problem: we present different variants of such problem and briefly il-
lustrate some known results, generally concerning classical models as the Bernoulli or the Markov
ones. In Section 4.2 we present a new stochastic model, defined by means of a rational formal
series in two noncommuting variables, and we introduce the rational symbol frequency (RSF) prob-
lem. Intuitively it concerns the study of the sequence of r.v.’s {Y,}, representing the number
of occurrences of a symbol a in words of length n chosen at random in {a,b}*, according to the
probability distribution given by the rational model. In order to compare this problem with those
previously dealt with in the literature, in Section 4.3 we show how our model can be viewed as a
proper extension of the Markovian model as far as counting the occurrences of a regular set in a
random text is concerned.

In Section 4.4, we assume that the transition matrix associated with the series defining the
rational model is primitive; we obtain asymptotic estimates for the mean value and the variance
of the statistics in exam, showing that they have linear behaviour as n goes to infinity. We also
present central and local limit theorems for Y,, (actually, we prove more general results, since
these theorems hold for an arbitrary power of any primitive series, too). Indeed, we prove that Y,
converges in distribution to a normal density function; intuitively this means that the occurrence
of the letter a in a given position of a “random” word of length n is rather independent of the
other occurrences and of the position itself. Thus, the behaviour of Y,, is similar to the sum of n
independent Bernoulli r.v.’s of equal parameter. Finally, we establish a local limit theorem for Y,,
which turns out to be related to the notion of symbol periodicity introduced in Section 2.4.

As a consequence of our analysis, in Section 4.5 we obtain an asymptotic estimation of the
growth of the coefficients for a nontrivial subclass of rational formal series in commuting variables.
This problem was actually among the original motivations of this thesis and can be seen as a
generalization of classical questions concerning the ambiguity in formal language (see Section 1.8).

4.1 The frequency problem: known results

Probability on pattern occurrences in a random sequence of letters (generally called text) has
been widely studied and has applications in many areas of bio-informatics, code theory and data
compression, pattern matching, design and analysis of algorithms, games. Here we focus on the
frequency of occurrences of a repeated pattern in a random sequence of letters. If we assume to
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know the probabilistic model (and its parameters) that generates the text, the central question is:
how many occurrences of a given pattern shall we expect in such a random sequence?

This problem, we refer to as the frequency problem, can be studied under different assumptions
concerning the source that generates the text, or the pattern to search for through the text.
While real sources are often complex objects, pattern statistics only deals with quite idealized
sources, described by means of probabilistic models. The simplest model is the Bernoulli one, that
represents a memoryless source; if in particular all letters are assigned the same probability, the
model is said to be symmetric. Another classical model is defined by Markov processes. Finally,
dynamical sources describe non-Markovian processes, characterized by unbounded dependency on
past history [58].

As for stochastic models, the choice of pattern can also lead to different settings. String
matching is the basic pattern matching problem. Here, one counts the occurrences of a given
string as a factor in the text. If the string reduces to a single letter, we shall use the expressions
symbol occurrences or symbol frequency problem. One can also search for a finite set of strings
and count the occurrences of all of them. This is useful when one searches for a given pattern
but a few mismatches are allowed, too. The approximation string matching is then expressed as
matching against the set of words that contains all the valid approximations of the initial strings.
Moreover one may be interested in occurrences of the pattern as a subsequence of the text; in this
case the letters no longer need to be consecutive. Also, the gaps between successive symbols may
be bounded or not. The hidden pattern problem concerns the case where some gaps are bounded
while some other are not. A generalization of all these problems is attained when the pattern is
defined by a general regular expression, thus including infinite sets of words.

When a pattern is searched for through a text, various constraints can be imposed on the count-
ing of overlapping occurrences; occurrences are considered valid if they satisfy these constraints.
In the overlapping model, any occurrences is valid and two overlapping patterns both contribute
to the count. On the contrary, in renewal models two overlapping sequences cannot be considered
valid simultaneously: one only counts the first occurrence and another occurrence is valid if it does
not overlap on the left with any other valid occurrence. Many other constraints can be chosen that
define other variants. For instance, one may count overlapping occurrences of different patterns,
or one may set a minimal distance between valid occurrences.

Several authors contributed to the study of the frequency problem, generally considering the
Bernoulli or the Markov models to generate the random text. Feller already suggested a solution in
his book when the pattern is single string [21]. However, the most important recent contributions
belong to Guibas and Odlyzko who in a series of seminal papers [32, 33, 34] laid the foundations
for the analysis of the symmetric Bernoulli case. In particular, in [34] the authors computed the
moment generating function for the number of strings of fixed length that do not contain any one
of a given set of patterns. Certainly, this suffices to estimate the probability of at least one pattern
occurrences in a random string generated by the symmetric Bernoulli model. Furthermore, in a
passing remark the authors presented some basic properties useful for the study of several pattern
occurrences in a random text for the symmetric Bernoulli model. In [26] Fudos, Pitoura and
Szpankowski extended some of those results to the asymmetric model, computing the probability
of a fixed number of occurrences of a string into a random text.

The results have then been extended to the Markovian model, first by Li [44], who considered
the problem with no pattern occurrences, and, more recently, by Régnier and Szpankovski. In [50],
using a method that treats uniformly both the Bernoulli and the Markov models, they established
that the number of occurrences of a string is asymptotically normal, under a primitivity hypothesis
of the stochastic model. They also estimated the probability of a fixed number of occurrences
of the pattern for three different ranges of such number, also obtaining large deviations results.
Moreover, their results allow a symbolic computation of all moments. In another work [49], Régnier
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also studied the same problem assuming various constraints concerning the overlapping hypothesis.

A further improvement is due to Nicodéme, Salvy e Flajolet, that in [45] extended all the
previous results considering a text generated by a Markov source and counting the occurrences
of a pattern defined by an unrestricted regular expression. In the same paper, the authors also
considered some computational aspects concerning the occurrences of the pattern, giving algorithms
for computing the parameters of the limit distribution. All these results hold under a primitivity
hypothesis on the stochastic matrix defining the Markov process.

Finally, non-Markovian models have been considered by Bourdon and Vallée in [10], where they
assumed the text was generated by dynamical sources and they considered generalized pattern,
entailing classical and hidden patterns with "don’t-care-symbols".

4.2 Stochastic models defined via rational formal series

In this section we present our stochastic model, defined by means of a rational formal series in
two noncommuting variables. Given the binary alphabet {a,b}, let us consider a formal series
r € Ry (a,b). Let n be a positive integer such that (r,z) # 0 for some z € {a,b}", where {a,b}"
denotes the set of all words of length n in {a,b}*. Consider the probability space of all words in
{a, b}" equipped with the probability measure given by

- () n
Pn{w} - Zape{a,b}" (,,_7 ZI?) (w € {aa b} ) (41)

We define the random variable Y, : {a,b}" — {0,1,...,n} such that Y,(w) = |w|, for every
w € {a,b}™ and we say that Y,, counts the occurrences of a in the stochastic model defined by r. It
is clear that, for every j = 0,1,...,n, we have

2 wl=n,wla=i (1)

n{ " J} Ewe{a,b}"(r7m)

(4.2)

Observe that if r is the characteristic series xr of a language L C {a,b}*, then P, is just the
uniform distribution over the set of words on length n in L, that is P,{w} = #(L N {a,b}") ! if
w € L, while P,{w} = 0 otherwise. Hence Y}, represents the number of occurrences of a in a word
chosen at random in L N {a, b}™ under uniform distribution.

A useful tool to study the distribution of the pattern statistics Y;, is given by the generating
functions associated with formal series. Given r € Ry (a, b)), for every n,j € N let r,; be the
coeflicient of a/b™ 7 in the commutative image of r, i.e.

Tnj = (F(r),dd™ )= > (r3) . (4.3)

lz|=n,|2|a=j

Then, we define the function r,(z) and the corresponding generating function r(z,w) by

n . +oo +o0 n )
rn(z) = Zrn,j e’? and r(z,w) = Z ro(z) w" = Z Zrn,j e w" (4.4)
j=0 n=0 n=0 j=0
where z,w are complex variables. Thus, from the definition of 7, ; and from equation (4.2) we
have T
P {Y, =j} = "L 4.5
Wa=iy= "% (@5)
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and the moment generating function of Y,, is given by
U(z) = ZPn{Yn =j} el* = rn(2) . (4.6)

Moreover, by equation (3.1) the mean and the variance of Y,, can be obtained by evaluating 7,
and its derivatives at z = 0:

_ rq(0) 2y _ Th(0)  (rh(0)\?
E(V) =2 V(v = - (rn (0)) . (4.7)

We also remark that the relation between a series r and its generating function r(z,w) can
be expressed in terms of a semiring morphism. As usual, we denote by X% the free commutative
monoid over the alphabet ¥. Then, consider the monoid morphism

H:{a,b}* — {*,w}®

defined by setting H(a) = e*w and H(b) = w. Such a map extends to a semiring morphism from

R (a,b)) to Ry [[e*,w]] so that
Ho = X e e us

z€{a,b}*

for every r € Ry {a,b)) . This property translates arithmetic relations among formal series into
analogous relations among the corresponding generating functions.

From now on, we assume that the series r is rational. Then the probability spaces given by
(4.1) define a stochastic model we call rational. The rational symbol frequency problem (RSF
problem) concerns the study of the distribution properties of the sequence of r.v.’s Y,, counting the
occurrences of a in the rational stochastic model defined by r.

Let (&, p,m) be a linear representation for r; set A = p(a), B = u(b), M = A+ B and assume
A # 0 # B to avoid trivial cases. Then, it is easy to verify that the following relations hold:

r(z) = & (Ae"+B)™ (4.9)
r(z,w) = &R(zw)n, (4.10)
where, for 2 near 0 and w near A~!, R(z,w) is a matrix satisfying
+oo -
Adj(I — w(Ae* + B
R(z,w) = Z(Aez + B)"w" = [[ —w(Ae* + B)] ! = (I = w(de” + B)) (4.11)

~ Det (I —w(Ae* + B)) *

n=0

Example 4.1 Consider the following representation:

¢ =(10), u(a)=<8 é),u(b)=<(1] ?)7’7:<})

corresponding to the automaton represented in Fig. 4.1. The rational series r thus defined satisfies

oy {1 el <1
/71 0 otherwise

leading to the probability distribution

L k=0
Po{Yu=k}={ ;4 ifk=1

0 otherwise.
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bC\b

Figure 4.1: State diagram associated with the rational model defined in Example 4.1.

4.3 Rational models and Markovian models

In order to compare the present problem with those previously dealt with in the literature, we show
how our model can be viewed as a proper extension of the Markovian model as far as counting the
occurrences of a regular set in a random text is concerned.

Thus, let us fix an alphabet ¥ and consider an homogeneous Markov chain defined by the initial
probability distribution 7 and the transition matrix T' = (To+)(s,r)exxx- The pair (7, P) induces
a probability measure II,, over X"

Oy(o1..-00) =70, To1,05 - Top_1,00 -

Now we are given a regular set of patterns R C X* and we are asked to count the number
Oy (o1 . ..0,) of occurrences of R in a random text oy . . . 04, generated by the above Markov process,
where by occurrence is meant a position k in the text where a match with an element of R ends.
Observe that the values of O, (o3 ...0,) range from 0 to n. We say that O,, counts the occurrences
of R in the stochastic model defined by (w,T) and we refer to the study of the distribution

I,,{0, = k}

associated with some triple (7, T, R) as to the Markovian pattern frequency problem (MPF prob-
lem). The relationship between the MPF and RSF problems is illustrated by the following theorem.

Theorem 4.2 Given a finite alphabet %, let (w,T) be an homogeneous Markov chain and R a
reqular expression over X. Moreover, let O,, count the number of occurrences of R in the stochastic
model defined by (w,T). Then, there exists a series r € Ry {a,b)) such that the r.v.’s Y, counting
the occurrences of a in the rational model defined by r satisfy the following relation

for eachn >0 and j =0,1,...,n.

Proof. We first construct a (fully defined) finite deterministic automaton recognizing ¥* R whose
set of states is @), the initial state is p and set of final states is F. As usual, we denote by
d(g,0) the transition defined by the letter o in state ¢ € ). Define the linear representation

u:{a, b} — Rg Q' Where Q' ={p}U{(g,0) | ¢ € Q,0 € X} and all entries of the matrices u(a)
and p(b) are zero except the entries

u(w)l’v((l'ﬂ) =m, and ,U(Z')(q,a),(q’,r) = DPo,r
such that d(p,0) = ¢’ and §(q, ) = ¢’ respectively, and (in both cases)
_ { aifg € F

b otherwise.

48



Denoting by e, and 1 the characteristic vectors of {p} and Q' respectively, the triple we are looking
for is (ep, i, 1). Indeed, let f : ¥+ — {a,b} T be the function such that, for every o102 -0, € T
(with 0; € X), f(o102-+-0,) = T1T2 -+ T, where z; = a if §(p,0109---0;) € F and z; = b
otherwise. Then, for every z € {a,b}*, epu(z)1 = Powes~1(z) IT, (w). As a consequence, for every
n and k, we obtain

Z epp(z)1 Z I, (w)

PV, = j} = z€{a,b}”, |z|a=j _ wEL™,|w|r=j = {0, = j}.
> el 3 M)
z€{a,b}" wEX™

Intuitively, the construction carried out in the previous proof consists of four steps:
e building the (fully defined) deterministic automaton recognizing the language X* R;
e re-labelling all the transitions entering in a final states by a and all other transitions by b;
e making final all states;
e using 7" and 7 to assign weights to transitions.
In the case of a Bernoulli model a simplified construction is described by the following example.

Example 4.3 Let ¥ = {0, 1}, define R = {10,100,101}, 7 = (1/2,1/2) and let T' = (T, ;) be given
by Tyr = 1/2 for every o, 7 € X. The construction of Theorem 4.2 provides an automaton which can
be reduced by collapsing any pair of equivalent states (i.e. those with equal outgoing transitions)
into a unique state. Thus, we get the (weighted) non-deterministic finite automaton represented
in Fig. 4.2, where all states are final and all transitions have weight 1/2. The corresponding linear

representation (£, u,n) defines a RSF problem equivalent to the original MPF problem. a
b

b \ §= (I’O’O)T n= (lalal)T

b 0 0 0
A= 0 0 1/2

a a 1/2 1/2 0
1/2 1/2 0
a B= 0 1/2 0
0

C

Figure 4.2: State diagram and linear representation of Example 4.3.

Remark 4.4 The converse of Theorem 4.2 does not hold in general.
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Indeed, for an arbitrary {Oy}, defined by a triple (7, P, R), the construction of Theorem 4.2 yields
a rational series in non-commutative variables a,b. Applying the morphism H to such a series, we
get

r(z,w) = i iHH{On =5} e
n=0 j=0

and considering it as a real valued function in two variables, it can be easily verified that it is
rational in the variables e®,w. On the contrary, there exist rational series that do not satisfy this
property, as the following examples show.

Example 4.5 Consider the series r of Example 4.1. It leads to the function

log(1 — z
8( w)+ e
w 1—w

r(z,w) = ZZP"{Y = jle*w™ = (e* — 1)

n=0 ;=0

which clearly is not rational in w. a
Example 4.6 Consider the series r defined by the following linear representation

n=<(1)>, u(a)=(8(1]), u(b)=<18>, n=((1)),

whose corresponding automaton is represented in Fig. 4.3. Observe that the support of r is the
regular language L = {b,ab}*. Now, let F),, be the number of words in L having length n. Then

_oonpy_-zjn_oonsn,jzjn
r(z,w)—zz wiYn =7} edw —ZZ i e“w™ .

n=0 j=0 n=0 j=0

It is easy to see that F; = F» =1, and F,, = F,,_1 + F,,_» for every n > 2. Hence F,, is the n-th
Fibonacci number and we can write

Fo=—7(¢"-9¢"),

sl

where ¢ = (1 + v/5)/2 is the golden ratio an

[oW

¢ = (1 —+/5)/2. In particular this implies
_ n,j
n=0 j=0

which is not rational in w. Then, neither r(z,w) can be rational in the variables e* and w. |

4.4 Primitive models

In this section we study the RSF problem for a nontrivial subclass of rational models, defined
by linear representations with primitive counting matrices. We show that, in these cases, the
asymptotic behaviours of the mean and the variance of the r.v. Y,, are strictly linear. Moreover
we prove that, when suitably normalized, Y,, converges in law to a standard Gaussian distribution.
Finally, we establish a local limit theorem for Y,, which turns out to be related to the notion of
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Figure 4.3: State diagram associated with the rational model defined in Example 4.6.

symbol periodicity introduced in Section 2.4. We remark that these results constitute the starting
point to deal with more general models in the following chapters.

Our analysis is based on the study of the moment generating function ¥,,(z) of Y,,; in particular
we show that ¥, (z) satisfies the assumptions of the criteria presented in Theorems 3.5 and 3.7.
Recalling the discussion of Section 4.2, it is clear that the complex functions r,(z) and their
derivatives play a key role.

Still using the notation introduces so far, let r be a series in Ry {{a, b)) ad assume that r admits
a linear representation (&, u,n) such that A+ B is primitive. Then, we say that the rational model
defined by r is a primitive model. With an abuse of terminology, we also say that (&, u,n) and
r are primitive. Under these assumptions, the matrix M = A + B verifies the Perron—-Frobenius
Theorem and all other properties we presented in Section 2.3. Thus, we know that M admits a
unique eigenvalue A of maximum modulus and with A we can associate strictly positive left and
right eigenvectors, say v and u. In particular we can choose v and u normed so that v,u = 1.
Moreover by Proposition 2.10 we can write

M™ = A" (uv, + C(n)) (4.12)

where C(n) is a real matrix such that C'(n) = O (¢™), for some 0 < € < 1. Note that the matrix

C=) Cn)

is well-defined and satisfies v,C = Cu = 0. Also remark that the value A is intrinsically linked
to the series r and it is invariant with respect to the chosen linear representation of r. Indeed,
recalling the definition (4.4) of r,,(2) and by equation (4.9) we have

D (rz) =ra(0) = & M ™ = X" (§,u)(vem) + O(p™) (4.13)

|z|=n
for some 0 < p < A.

Now, let us consider the generating function R(z,w) of the sequence {r,(z)},. We recall that
this function is well-defined in a neighbourhood of (0, ), where it satisfies relation (4.11). The
singularities analysis of R(z,w) in a neighbourhood of z = 0 allows us to prove the following
proposition.

Proposition 4.7 Let r be a primitive series and A be the Perron—Frobenius eigenvalue associated
with r. Then there exist an analytic function y(z) at z = 0, satisfying y(0) = A and a matriz
function F(z), having analytic and non-null entries at z = 0, such that for every z near 0 we have

F(z) +0( 1

B(z,w) = 1—y(2)w 1-pw

), as n — 00
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where 0 < p < |y(z)].

Proof. By equation (4.11), it is clear that the singularities of R(z,w) are the inverse of the
eigenvalues of Ae® + B. The Perron-Frobenius Theorem guarantees that A is a simple root of the
characteristic polynomial of M and this means that it is a simple root of Det(yI — (A + B)). Thus
the equation

Det (yI — Ae* — B) =0 (4.14)

defines an implicit function y = y(z) analytic in a neighbourhood of z = 0 such that y(0) = .
Note that if A # 0, then y'(0) # 0. Moreover, by a continuity property, there exists p > 0 such
that, for every z near 0, all roots p of (4.14) different from 1 (i.e. all other eigenvalues of Ae* + B)
satisfy the relation |u| < p < |y(z)|. Hence the singularities of R(z,w), except A=, are all greater
than p~!. By decomposing in partial fractions, we can express the matrix R(z,w) in the form

__F()
= L B (4.15)

where, for every |z| < ¢, E(z,w) has singularities y~' of modulus greater than p~!. By 'Hopital’s
rule, F'(z) is given by

R(z,w)

y(2) - Adj (I —y(2)~"(Ae* + B))
2-Det (I — w(Ae? + B)) |yyy(z)-1
and note that by point 5. of Perron-Frobenius Theorem, Adj(AI — A — B) > 0. Therefore, by

continuity, all entries of F(z) are different from 0 for every z near 0 and every w near A\~1. This
concludes the proof. m|

F(z)=-

It should be noted that if A # 0, then y’(0) # 0. The previous proposition yields a quasi-power
condition for the sequence {r,(z)}n in a neighbourhood of z = 0, as n goes to infinity.

Corollary 4.8 Assume the hypotheses of Proposition 4.7 and let y(z) and F(z) be the functions
defined in the same proposition. Then, for every z near 0 we have

rn(z) = EF(2)n - y(2)" + O(p"), as n — oo
where 0 < p < |y(2)|.

Proof. It suffices to observe that £, R(z,w)n is the generating function of {r,(2)},. O

4.4.1 Analysis of mean value and variance in the primitive case

In this section we prove that if A # 0 # B, then the mean and the variance of Y;, have strictly
linear behaviour with respect to n.

Theorem 4.9 Let r be a primitive series, (&, u,m) one of its linear representations and X its
Perron—Frobenius eigenvalue. Also let y(z) and F(z) be the functions defined in Proposition 4.7.
If Y, counts the occurrences of a in the rational model defined by r, then the mean value and the
variance of Yy, satisfy the relations

E(Y,) = Bn + g + 0™, Var(Y,) =yn+ 0(1) (4.16)
where |e| <1 and
8= y§\0)’ v = y )(\0) ) a=¢£,F0) 7, 5= ¢, F'(0) 1. (4.17)
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Proof. By equation (4.15), we can write
mn(2) = & F(2)n - y(2)" + En(2) (4.18)
where E,(z) is the n-th coefficient of E(z,y) In particular, since y(0) = A\, we have
rn(0) = a\™ + O(p™)

for some 0 < p < A. Note that the derivatives of E(z,y) at z = 0 have the same singularities of
E(0,y) and hence the growth order of E} (0) and E!/(0) is also O(p™). Thus, differentiating both
sides of (4.18) ad evaluating at z = 0 we obtain

rn(0) = (Ba-n+38)A" +0(p")
() = (BPa-(n®—n)+2B5-n+(y+B%)a-n) A"+ O\").
Then, the statement is proved by recalling formulas (4.7). O

Corollary 4.10 Under the hypotheses of Theorem 4.9, in a neighbourhood of z = 0 we have

y(z) = A (1 + Bz + @f + O(zg)> .

Remark 4.11 The constants «, 3, v and § can be explicitly determined from M and its eigenvec-
tors. Indeed, the following equalities hold:

v, Au
A )

v, ACAu

a=(&u)(vem), B= v=8-5"+2 T

CA c
0 =&, Dn, where D= W + UV =
Proof. The first equality follows from equation (4.13). The others can be proved as follows. Observe
that (4.12) implies

+oo +o0 +o0
R(0,w) = Z M"™w" = Z wo, A"w" + Z C(n)A\"w™ . (4.19)
n=0 n=0 n=0

Since each entry of ) C(n)z™ converges uniformly for  near 1 to a rational function, we have
>, C(n)z™ = C 4+ O(1 — z) and hence the second series in (4.19) equals C' 4+ O(1 — Aw), which
proves

R(0,w) = l’f’iw +C + 01— w) . (4.20)

Now let R, and R, denote the partial derivatives OR/0z and 82 R/92?, respectively. Recalling
the derivative formulas (2.3) and (2.4) we get

RZ( 9

0,w) = R(0,w) Aw R(0,w)
R..(0,w

) = R.0,w) I+ 24w R(0,w)]
and note that by equation (4.4) the sequences {r} (0)} and {r/1(0)} have generating function given
by £ R.(o,w) n and £, R,.(0,w) . Then, replacing (4.20) in the previous expressions, one can

obtain expansions for 7,(0) and r}(0). The result follows by comparing such expansions with those
appearing in the proof of Theorem 4.9. m|
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For the sake of brevity, from now on we say that 8 and -y are the mean constant and the variance
constant of Y,,. Observe that these constants do not depend on the initial and final states of the
weighted automaton associated with r. In particular, if r is the characteristic series of a language
L, then E(Y,,) = 2 + O(1) and hence 8 = 1.

In general, note that B = 0 implies § = 1 and v = 6 = 0, while A = 0 implies § =~y =§ = 0;
in these cases we say that the linear representation (£, u,7n) and the series r are degenerate. On
the contrary, we show that if A # 0 # B, then the constants of the main terms of mean value and
variance of Y,, are non-null. To this aim, let us first prove a technical lemma, where we use the
following notation: given a non-null polynomial p(z) = Y, prz* having coefficients in R}, we use

V(p) to denote the variance of any r.v. X, such that P{X, =k} = p’Z’{).

Lemma 4.12 For any pair of non-null polynomials p, q with nonnegative real coefficients, we have

p(1) q(1)
Vipg) =V(p)+V(g), Vip+q) > ———7=Vp)+ ———"=V(9g) -
(pg) =V (p) +V(q) p+9) p(1)+q(1)() p(1)+q(1)()
In particular, we have V(p+ q) > min{V(p), V(q)}.
Proof. By the definition, we get
p"(1) +p'(1) (p’(l))2
|4 = — . 4.21
»=""0 70 @21
Hence, the first equation is immediately proven. Further, observe that
(P'(1) +4¢'(1))?
p(1) +q(I)V(p+q) =p" (1) +¢" (1) +p'(1) +¢' (1) - 45—,
(1) +¢(1))V(p+q) D+ +p 1) +4' (1) 2+ a(D)
Thus, the second relation follows again from (4.21) by recalling that (‘16':—122 < % + %, for every
four-tuple of positive values a, b, ¢, d. m|

Theorem 4.13 Let r € Ry ({(a,b)) be a non-degenerate primitive series. If Y, counts the occur-
rences of a in the rational model defined by r, then both E(Y,,) and Var(Y,) have strictly linear
behaviour with respect to n.

Proof. Let § and + be defined as in Theorem 4.9. Since A is non-null and both v and u are strictly
positive (point 2. of Perron—Frobenius Theorem), it is clear that § > 0. Proving that « is strictly
positive is equivalent to proving that Var(Y,,) > cn for some ¢ > 0 and for infinitely many n. Since
A+ B is primitive and both A and B are non-null, there exists an integer ¢ such that all the entries
of the matrix C' = (Az + B)! are polynomials with at least two non-null coefficients. This implies
that the value

Cc = mln{V(C,J) | Z,] = ]., 2, .. .,m}

is strictly positive. Then, by the previous lemma, for every n € N and every pair of indices 4, j we
have
V(CET) > min{V(C}) + V(Crj) | k =1,2,...,m}.

As a consequence, V(Ci”j“) > c+min{V(Cj) | k =1,2,...,m} proving that V(C}}) > nc. Since
Y, is a r.v. associated with ¢'(Az + B)™n, we get

Var(Yin) > min{V(C}) |i,j = 1,2,...,m} > nc

for every n € N. Together with (4.16) this proves Var(Y,) = ©(n) and hence y > 0. m|
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4.4.2 Limit theorems in the primitive models

Y,.—B8n }
Vvn In
converges in law to a standard Gaussian distribution. Moreover, we establish a local limit theorem

for Y,, which turns out to be related to the notion of symbol periodicity introduced in Section 2.4.
Actually, we prove a more general result, that is we show that the previous properties hold for an
arbitrary power of any primitive series.

As in the previous section, we say that a series r € Rf“t (a, b)), is primitive if it admits a linear
representation (&, u,n) such that p(a) + p(b) is a primitive matrix; moreover, we say that r is
non-degenerate if p(a) # 0 and u(b) # 0.

In this section we show that, in primitive models, the sequence of normalized r.v.’s {

Theorem 4.14 For any positive integer k and any primitive nondegenerate r € RE {a, b)), let s
be defined by s = r* and let Y,, count the occurrences of a in the model defined by s. Then the
following properties hold.

T1 There exist two constants o and 3, satisfying o > 0 and 0 < 8 < 1, such that Yf/;—i" converges

in distribution to a normal r.v. of mean value 0 and variance 1.

T2 If (& u,n) is a primitive linear representation for r and d is the x-period of p(a)x + u(b), then
there exist d functions C; : N — Ry, i =0,1,...,d — 1, such that 3, Ci(n) =1 for every
n € N and further, as n grows to +00, the relation
d C(j)d(n) e—(j;5:)2
V2man

holds uniformly for every j =0,1,...,n (here {j)qa =j — |j/d|d).

Pu{Y, = j} = (1 +0(1)) (4.22)

Observe that the primitivity hypothesis cannot be omitted to obtain a Gaussian limit distribution;
to see this fact it is sufficient to consider the language a*b*. Also notice that in case k = 1,
statement T2 establishes a local limit theorem for any primitive model.

Before proving the previous theorem, let us illustrate its meaning by some examples.

Example 4.15 Consider the RSF problem defined by the weighted automaton of Example 4.3.
As shown there, it is equivalent to a MPF problem where the pattern is R = {ba, baa, bab} and the
stochastic model is given by a Bernoulli process of parameter 1/2. Clearly, the counting matrix
M = A+ B associated with the automaton is primitive; moreover, one can prove that the z-period
of M(z) = Az + Bisd=2.

The characteristic polynomial of M is y?(y — 1); hence its Perron—Frobenius eigenvalue is 1.
Moreover, u = (1/2,1/2,1/2), and v = (1/2,1,1/2),. are right and left eigenvalues associated with
A, normed so that v,u = 1. Thus, recalling (4.13) we can easily get 7,(0) = 1 + O(e) for some
€ < 1. Also, the generating function of {r,(z)}, can be computing using (4.11), so obtaining

efw? —eX*w? +4
w? —e22w? —4w+4

I'(Z,’U)) = éTR(z7w) n=

Hence, considering the expansion of r(z,w) with respect to e* and w, we can directly compute its
coefficients r,, ; for 2 < j <n. As a consequence, by relation (4.5) we get

(n+1) (n—l)
. -1\ if j is even
o
-1
(nj > ifjisoddand j<n-—1.

This result is consistent with statement T2 of Theorem 4.14, as also shown in Figure 4.4. |

P.{Y, = j} =
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Figure 4.4: Plot of the probability function P,{Y, = j} obtained in Example 4.15, for n = 800 and
350 < j < 450. The limit behaviour is given by the superimposition of two alternating Gaussian densities.
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b a
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b

a b

—O—O——0G
Figure 4.5: State diagram of the automaton defined in Example 4.16.

Example 4.16 Consider the automaton represented in Fig. 4.5. Clearly, it is primitive and its
a-counting matrix has z-period 5. Figures from 4.6 to 4.11 represent the probability function and
the cumulative distribution of the r.v. Y;, obtained choosing different vectors £ and 7. All plots are
drawn for n = 340 and j between 60 and 150. It is easy to observe the convergence in distribution
to a Gaussian r.v. (statement T1 of Theorem 4.14) and the pointwise superimposition of translated
Gaussian behaviours (statement T2 of Theorem 4.14). |

Proof of Theorem 4.14

We split the proof in two separate parts and we use the criteria presented in Theorem 3.5 and in
Theorem 3.7.

Proof of T1 Since s = r*, by applying the morphism # defined in (4.8) we get

s(z,w) = r(z,w)k .
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Figure 4.6: Plot of the probability function and the cumulative distribution for the r.v. Y340 of Example
4.16 with £ = =(1,0,0,0,0,0,0,0,0,0,0),.
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Figure 4.7: Plot of the probability function and the cumulative distribution for the r.v. Y340 of Example
4.16 with ¢ = (1,0,0,0,0,0,0,0,0,0,0),. and = (1,1,1,0,0,0,0,0,0,0,0),.
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Figure 4.8: Plot of the probability function and the cumulative distribution for the r.v. Y340 of Example
4.16 with £ = (1,0,0,0,0,0,0,0,0,0,0), and n = (1,1,1,1,1,0,0,0,0,0,0),..
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Figure 4.9: Plot of the probability function and the cumulative distribution for the r.v. Y340 of Example
4.16 with £ = (1,0,0,0,0,0,0,0,0,0,0), and p = (1,1,1,1,1,1,1,1,1,0,0),.

.....

Figure 4.10: Plot of the probability function and the cumulative distribution for the r.v. Y3409 of Example
4.16 with £ = (1,0,0,0,0,0,0,0,0,0,0), and n = (1,1,1,1,1,1,1,1,1,1,1) ..

By Proposition 4.7, we know that near the point (0, \™1) the function r(z,w) = £, R(z,w)n admits
a Laurent expansion
f(z)

I‘(Z,’U)) = W + O(].)

where f(z) and y(z) are complex functions, which are non-null and analytic at z = 0; moreover,
y(0) = X\. As a consequence, in a neighbourhood of (0, A~!) we have

and hence the associated sequence is

@)= 14 ("7 uar 40 ).

Now, since Y;, counts the occurrences of a in the model defined by the series s, by relation (4.6)
its moment generating function is given by Uy, (2) = s,(2)/5,(0) and hence, in a neighbourhood
of z =0, it has an expansion

v =26 = () () - aroom
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Figure 4.11: Plot of the probability function and the cumulative distribution for the r.v. Y340 of Example
4.16 when all states are made both initial and final.

Finally, recall that by Theorem 4.13 8 = 3'(0)/\ and v = y"(0) /A — 3?2 are strictly positive. Hence
{Y,.} satisfies both conditions of Theorem 3.5, with h(z) = (f(2)/f(0)*, u(z) = y(2)/\, p = B
and ¢ = a. This proves the result. m|

Proof of T2 For every p,q € {1,2,...,m}, let 79 be the series defined by the linear
representation (§pep, f1, 74€q), Where e; is the characteristic vector of entry i. Then

m

r= Z r(P9)
P,q=1
Thus, since s = r*, we have
5 = Z pPrar) | p(p2a2) | p(Prae) (4.23)
where the sum is over all sequences £ = p1qi1p2qa - - - Prqr, € {1,2,...,m}?*. For the sake of brevity,

for every such £, let 7 be the series
T’(Z) — T(Pllh) . 7-(1’2@) . r(kak) .
By the primitivity hypothesis this series is identically null if and only if §,, = 0 or 5, = 0 for

some j € {1,2,...,k}. For this reason set Supp = {£ € {1,2,...,m}?* | r() #0}. Then, for every
£ € Supp, applying the morphism R to the previous equation and recalling (4.10), we get

k k
r() 0,w) = H I.(Pil]i)(o’ w) = H &pi (I — 'LUM);; M

i=1 =1
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with the obvious meaning for the notations r®) and r(Pi%)_ This implies, by the primitivity of M,
that r(® (0, w) has a unique pole of smallest modulus at A~!, which has degree k. As a consequence,
the sequence associated with r()(0, w) satisfies the following relation

r9(0) = ¢p n* 1A + O(nF2A") (4.24)

for some ¢; > 0. Moreover, from (4.23) we have s = 3¢ 6,,,,, 7 and hence

Sn,j = Z r(e) and 5,(0) = Z r0) = ¢ n*IA" 4 O(nF~2A") (4.25)

LeSupp LESupp

for some ¢ > 0. Then recalling equation (4.5), for every j € {0,1,...,n} we have

LY i) ri (0) 0 _ ;
Pn{Yn:J}Zmz Z 0 Z P {¥;" =j}

£eSupp Sn(O) £ESupp S"(O)

where Y,§") counts the occurrences of a in the model defined by (). Finally, from equation (4.25),
we get

Pu{Yon=j}= Y CePu{V}9=j}+0(n" (4.26)

LESupp

where Cy is a positive constant for every £ € Supp and >, g, Ce = 1.

Thus, to determine the local behaviour of {Y,}, we first study {Y,SZ)}. Indeed, by the previous
relation, it is sufficient to prove that the equation

d 6_% o
VO —jy=d Vaman PO Hi=pcmodd)
0 otherwise
holds uniformly for every j = 0,1,...,n, where o and 3 are defined as in T1, while p, is a (possibly

depending on n) integer such that 0 < p, < d (in particular Cj(n) =3 ,_; Cg for each 7). To this
aim, we simply have to show that, for every n € N, Yy) satisfies the hypotheses of Theorem 3.7.
First, we prove that Y;\") takes values in a set like (3.9), where d is the z-period of p(a)z + p(b).

We provide an integer pg, such that, if j Z py (mod d), then rff)

/i = 0: by equation (4.5), this implies
that Prob {erl) = j} vanishes, too. By the definition of 7(¢) it is clear that for any j =0, 1,..

the values 7‘55)] are given by the convolutions

PO — Z F(Pidi)
ng Tnigi® -
nifngdecng=n
Jitjet+-+ie=J

'7n7

Now, consider any r(p ’;”). By Proposition 2.21, we know that for each pair p;,q; there exist an

integer §;, 0 < §; < d such that

P Pidi) #0 implies j; =yn; + d; (mod d)

nz WJi

where 0 < v < d does not depend on p; and ¢;. Thus, choosing p, so that 0 < p; < d and
pe =N+ Ele d; (mod d), we have that rg,)j # 0 implies j = p; (mod d).
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As far as condition C1 and C2 are concerned, we can argue (with obvious changes) as in the
proof of T1 and observe that the two constants a and § are the same for all series (¢ with
£ € Supp, since they depend on the matrices A and B (not on the initial and final arrays).

Finally, to prove condition C3 let us consider the generating function of {r(e)( )}

r® (z,w) (I —w(Ae* + B))™! psa; Maj -

||":]a~

For every 6 € R we have

H§:1 €p; Adj(I — w(Ae® + B))Pij Mg;
[Det(I — w(Aei + B))]*

rO(i0,w) =

showing that the singularities of the function are inverses of eigenvalues of Ae? + B. As a con-
sequence, by Theorem 2.26, for every 6 # 2kr/d, all singularities of r(® (36, w) are in modulus
greater than A~!. Hence, by Cauchy’s integral formula, for any arbitrary 6, € (0,7/d) we can
choose 0 < 7 < X such that the associated sequence {rgf) (i6)} is bounded by O(7™) for every
|6] € [fo,7/d]. By (4.24) this implies

(l) n
(6) Oo(r") n
Y(‘)(w) = rg)( 0) - O(nkTan) = O(e")

for some 0 < € < 1, which proves condition C3. O

4.5 Estimate of the maximum coefficients of a rational series

The local limit property proved in the last section can be used to study the order of growth of
the maximum coefficients of rational formal series in commutative variables. This problem was
actually among the original motivations of this thesis and can be seen as an generalization of
classical questions concerning the ambiguity in formal language (see Section 1.8).

Formally, given a series r € Ry [[a, b]], we define its mazimum function g, : N — Ry as

gr(n) = max{|(r,z)| : = € {a,b}®,|z| =n} (for every n € N).

Here we estimate the order of magnitude of g,.(n) for formal series in commuting variables that are
powers of primitive rational formal series.

Corollary 4.17 For any k € N, k # 0 and any primitive series r € Rf“t {a, by, let s = r* and
consider its commutative image S = ¢(s) € R [[a,b]]. Then the mazimum function of S satisfies

the relation
(n) = O =B/2\") if r is not degenerate
IS = @(nh—1an) otherwise

where A > 0.

Proof. Let (&, u,n) be a primitive linear representation of r and let A be the Perron-Frobenius
eigenvalue of p(a) + p(b). To determine ggs(n) we have to compute the maximum of the values
Sn,j = (S,a?b" ) for j =0,1,...,n

First consider the case when r is not degenerate. Then, let Y, count the occurrences of a in
the model defined by s = 7¥ and recall that P, (Y, = j) = s,,/sn(0). Now, by (4.25) we have
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5,(0) = ©(n*~1A") and by Theorem 4.14, the set of probabilities {P,(Y,, = j) | j = 0,1,...,n}
has the maximum at some integer j € [fn — d, Bn + d], where it takes on a value of the order
©(n~1/2). This proves the first equation.

On the other hand, if r is degenerate, then either p(a) = 0 or u(b) = 0. In the first case, all r,, ;
vanish except r,, o which is of the order ©(A™). Hence for every n, the value max;{s, ;j} = 5,(0)
is given by the k-th convolution of 7, o, which is of the order ®(n*~1A"). The case u(b) = 0 is
similar. |

If in particular if £ =1 and r is the characteristic series of a language L C {a, b}*, then we get

max { #{z € LN{a,b}": |z|o =k} } = © (%)

0<k<n

Observe that in the context of trace theory, the previous relation yields the growth of the degree
of ambiguity of the trace language generated by L over the commutative monoid with generators

{a,b}.

Example 4.18 Consider the rational function (1 —a — b)~*. Tts Taylor expansion near the origin

yields the series
—+oo n
_ n+k—1 N\ jinj
=2 ()R 0)e

By direct computation, one can verify that

gs(n) = (anI 1) (l_nT/LQJ) = Q(nh3/22m)

In fact, S can be obtained as the commutative image of the series s = r*, where r = X{a,b}* €

Ry (a, ). O

Even though the statement of Theorem 4.14 cannot be extended to all rational models, we
believe that the property given in Corollary 4.17 well represents the asymptotic behaviour of
maximum coefficients of all rational formal series in two commutative variables. We actually think
that a similar result holds for all rational formal series in commutative variables. More precisely, let
us introduce the symbol © with the following meaning: for any pair of sequences {f,}, {g,} C Ry,
we have g, = O(f,)) if g = O(f,,) and g, ; = O(fy;) for some monotone strictly increasing sequence
{n;} C N. Then we conjecture that the asymptotic behaviour of the maximum function of every
rational formal series t € Ry [[o4,- - ,0¢]], is of the form

ge(n) = %) (nk/2)\")

for some integer k > —¢ + 1 and some A € Ry .
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Chapter 5

Bicomponent models

In this chapter we improve the analysis of the RSF problem, dropping the primitivity hypothesis
assumed so far. More precisely, here we consider bicomponent rational models, defined by rational
series corresponding to weighted automata with two primitive components. Two special examples
are of particular interest: they occur when the formal series defining the model is, respectively,
the sum or the product of two primitive formal series. We will call them the sum and the product
model, respectively, and they will represent the leading examples of our discussion.

Our main results concern the asymptotic evaluation of mean value and variance and the limit
distribution of the number of symbol occurrences in a word randomly generated according to such
a bicomponent rational model. Note that in Chapter 4 we have shown that primitive models are
characterized by Gaussian limit behaviour. Moreover, to our knowledge, the pattern frequency
problem in the Markovian model is usually studied in the literature under primitive hypothesis
and Gaussian limit distributions are generally obtained. On the contrary, here we get in many
cases limit distributions quite different from the Gaussian one. Many different situations occur,
mainly depending on two conditions: whether there exists a communication from the first to the
second component or not (in this case we get a sum model); whether one component is dominant,
i.e. its Perron-Frobenius eigenvalue is strictly greater than the Perron—Frobenius eigenvalue of the
other one (if they are equal we say that the components are equipotent).

The chapter is organized as follows. After the formal definition of the problem, in Section
5.2 we analyze the dominant case, which splits in two further directions according whether the
dominant component is degenerate (that is, all its transitions are labelled by the same symbol)
or not. The equipotent case is studied in Section 5.3; here several subcases arise corresponding
to the possible differences between the leading terms of the mean values and of the variances of
the statistics associated with each component. Both sections 5.2 and 5.3 contain a final part that
focuses on the differences occurring in the sum model. All results are discussed in the last section
and summarized in Table 5.1.

5.1 Statement of the problem

Let us formally define the model we study in this chapter, named the bicomponent model. Consider
a rational series r in the non-commuting variables a,b with coefficients in Ry and let (&, u,n) be
one of its linear representations. We assume that there exist two primitive linear representations
(&1, p1,m) and (&2, p2, m2), of size s and t respectively, satisfying the following relations:

& =(ner),  al) = (M0 ) () 6.0
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where p112(z) € Ry for every z € {a, b}

Intuitively, this linear representation corresponds to a weighted non-deterministic finite state
automaton (which may have more than one initial state) such that its state diagram consists of
two disjoint strongly connected subgraphs, possibly equipped with some further arrows from the
first component to the second one. Thus, a computation path

=030 3¢ 123 (5.2)
can be of three different kinds:

1. All g;’s are in the first component (in which case we say that £ is contained in the first

component);
2. There is an index 0 < s < n such that the indices qo, q1,...,¢s are in the first component
while gsy1,.-.,¢n, are in the second one. In this case x,41 is the label of the transition from

the first to the second component;

3. All g;’s are in the second component (in which case we say that £ is contained in the second
component).

Clearly, paths of different kinds may be labelled by the same word. In the sequel we need to
distinguish different situations, so we refine the probabilistic spaces introduced in Section 4.2.
More precisely, let n be a positive integer such that &, u(w) n # 0 for some w € {a,b}™ and denote
by 2, the set of all computation paths of length n. Then, for each £ € Q,, in the form (5.2), we
define the probability of £ as

fqoﬂ(wl)qoqlﬂ(xZ)qmz T N(xn)qn_lqn Urs
7 (u(a) + p(d))™n '

Denoting by 2%» the family of all subsets of (2,,, it is clear that (Q,,2%",P,) is a probability space.
Moreover, we consider the r.v. Y, : Q, = {0,1,...,n} such that Y,,(#) is the number of a occurring
in the label of £, for each £ € Q,,. Then, for every integer 0 < k < n, we have

P {f} =

. Tn,j
P.{Y, =j}= ﬁ;
k=0 "n,

where the values ry, ; are defined as in (4.3). Thus, the probability distribution of the r.v. Y, is
the same as the one studied in Chapter 4, even though the sample space in more subtle.

For the sake of brevity, we use 7 (i = 1,2) to denote the series such that (r(®,w) = &pu;(w)n;,
for all w € {a,b}*. Moreover, we use the notations A; = p;(a), B; = pu;(b), M; = A; + B; for
1= 1,2 and A12 = /.l,lz(a), 312 = H12 (b), M12 = A12 + 312. Hence, we have

A::u(a):(f(l)l éf;); B:N(b):(%l %22), M:A-I—B:(]\gl J}@;).

We always assume A # 0 # B and & # 0 # 12. Anyway, we take into consideration models
such that A; = 0 or B; = 0 for some ¢ = 1,2; in this case, consistently with the terminology used
so far, we say that the i-th component is degenerate. To avoid trivial cases, we also assume the
following significance hypothesis:

(A1 #0or Ay #0) and (B; #0 or By #0) . (5.3)

Note that if the last condition is not true, then Y,, may assume two values at most (either {0,1} or
{n—1,n}). Assuming the significance hypothesis means to forbid the cases when both components
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only have transitions labelled by the same letter (either a or b). For analogous reasons, when
M5 = 0 we always assume & 7# 0 # 1.

Still using the notations introduced in the previous chapter, from now on the functions r,(z)
and R(z,w) are referred to the triple (£, u,7), while the expressions 7, (z) and R (z,w) are
referred to the triple (&;, ui,n;) for ¢ = 1,2. Thus, the decomposition of the linear representation
induces a decompositions of r,(z) and R(z,w), too. In particular we obtain

_( RO(z,w)  S(z,w)
Ry = (B S (5.4
where the matrix S(z,w) is defined by
S(z,w) = RV (z,w) - Mys(2) - R® (z,w) . (5.5)

In other terms, R(") gives the contribution of the i-th component, while S(z,w) represents the
interconnection between the components.
Now, by the decomposition (5.4) we get

er"(z)wn = €T R(Z,’Il)) n= §1T R(l)(zaw) m + §1T S(z,w) n2 + §2T R(z)(zaw) 72
n=0

and setting > sp(2)w™ = &, S(z, w)n2 we obtain
ra(2) = 10 (2) + 80(2) + 7 (2). (5.6)

To estimate the mean and the value of Y, and to determine its limit distribution, we follow the
line developed for the primitive case. First, we need an asymptotic evaluation of r,(2), R(z,w)
and their derivatives. Referring to the terms rid) (), 1 = 1,2, since My and M are primitive, we
can apply all results of Section (4.4) to the series () and r(?). Moreover, we agree to append
indices 1 and 2 to the values associated with the linear representations (&1, p1,71) and (&2, pa,72),
respectively. Thus, for each ¢ = 1,2, the Perron-Frobenius eigenvalues );, the eigenvectors u;, v;,
the functions y;(2), fi(2), the matrices C;, D;, F;(z) and the constants «;, 8;, i, 0; are well-defined
and associated with the linear representation (&;, pi,7;). On the other hand, to obtain asymptotic
approximations of s,(z), we can exploit equations (2.3) and (2.4) to compute the derivatives of
S(z,w) with respect to z. So, it is clear that the behaviour of s,(2) and hence the properties of
Y, depend on the way the components mix together. This combination depends mainly on two
conditions.

(i) Whether there is a communication from the first to the second component (i.e. M1 # 0); if
there is no communication, then we get the sum model (see Example 5.1).

(#4) Whether there exists a dominant component (i.e. A1 > Ay or viceversa) or both components
have the same eigenvalues, in which case we say that the components are equipotent.

In Section 5.2 we analyze the dominant case, while the equipotent case is studied in Section 5.3.
We first assume M2 # 0; anyway both sections contain a final part that focuses on the differences
occurring when the matrix M;, vanishes.

5.1.1 Sum and product models

Before setting out the analysis, we present two special cases that occur respectively when the
formal series r defined by (&, 4, 7) is the sum or the product of two rational formal series that have
primitive linear representation.
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Example 5.1 (Sum) Let r be the series defined by

(r,w) = Eippr (W)m + o pr2(W)12 Yw € {a,b}*

where (&;, pj,7;) is a primitive linear representation for j = 1,2. Clearly, r admits a bicomponent
linear representation (&, u,n) which satisfies (5.1) and such that M;, = 0. As a consequence, the
computation paths of type 2 cannot occur and hence

ra(z) = ri(2) + 1D (2) -
Example 5.2 (Product) Consider the formal series
(r,w) = Z Ty V1(T) T1 - T2y v2(Y) T2 VYw € {a,b}*
w=zy

where (7;,v;,7;) is a primitive linear representation for j = 1,2. Then, r admits a bicomponent
linear representation (&, 1, n) such that

b=, u)= (0 TTEAO ) (R )

va(x) P

In this case, the three terms of r,,(z) can be merged in a unique convolution

mn(2) = Z &ip(Are” + B1)' 1y myp (Aze” + Bo)" 'y
=0

5.2 Dominant component

In this section we study the behaviour of {Y,,} assuming A; > A2 (the case \; < Ay is symmetric).
If the dominant component is not degenerate, then it determines the main terms of expectation
and variance of our statistics and we get a Gaussian limit distribution. We also describe the limit
distribution in the case of a dominant degenerate component. Apparently, this has a large variety
of possible forms depending even on the other (non-main) eigenvalues of the dominated component
and including the geometric law in some simple cases.

We first assume Mis # 0 while the case Mi2 = 0, corresponding to Example 5.1, is treated in
Section 5.2.4.

5.2.1 Analysis of moments

As for the primitive case, to study the first two moments of Y,, we develop a singularity analysis
for the functions R(0,w), R.(0,w) and R,,(0,w), which yields asymptotic expressions for r,(0),
r;,(0) and r//(0). A key role is played by the matrix @) defined by

n
Q= \I-M)"'=XTTRPD0,A1) .
Note that @ is well-defined since A; > 2. Moreover, we have
RPOMNY)=X2-QMQ  and  RP(0,01) =M - QA:0Q.
M, and M, being primitive, we can apply the results of Section 4.4.1 to R™ (0, w), R® (0, w)
and their partial derivatives. Moreover we need asymptotic expression for S and its derivatives.
Since A\; > A2, by using (5.5) and applying (4.20) to R (0,w), as w tends to A", we get

1
S(O,UJ) = " . U1U1TM12Q + O(].) .

1-X
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In a similar way one can obtain the Laurent expansions of the matrices S, (0,w) and S, (0,w) in
a neighbourhood of w = 1/A;. Thus, recalling equation (5.6) and summing up the contributions
of all terms, one comes to the following equations:

ra(0) = r(0) +5,(0) + P (0) =
= AT (&ipwm) - vigp(m + M12Qna) + O(p"),
r(0) = nAl-B1 (Eipwr) -vi,(m + M2 Qna) +

+ AT (Girur) - vip (A2 + M12 QA2) Q2 + AT - &1, Di(m + M2 Qm2) +
— Al Bi(&ipur) s v Mio(I + QM2)Qnz2 + O(p")
n(0) = AT -BF (brpwa) - vr, (m + Mz Qn) +
+ nAT 201 [ (Gpur) - vip (Arz + M1z QA2) Qmo 4+ €172 D1 - (i + Mio Q) | +
= AT [2B1(&pur) - v, Mia(I + QM2)Qne] +

. AC1A
+ nAT- (ﬂ1 — B +2 Uu%ul) “(E1pu1) v (m + Mi2 Qn2) + O(AY),
1

where |p| < A1. Thus, the relationship (4.7) between the function r,(z) and the moments of the
r.v. Y, yields to the following result.

Proposition 5.3 If A\; > Ay, then the mean value and variance of Y, satisfy the following rela-
tions:
E(Y,) = Bin+0Q1), Var(Y,) =nn+0(1) .

From this proposition we easily deduce expressions of the mean value for degenerate cases, too. If
B; =0, then 8; =1, D; =0 and, by the significance hypothesis, By # 0; thus we get

V1, (Bi2 + M12QB2)Qny
V1 (M + M12Qn2)
On the contrary, if A; =0, then g1 =0, D1 =0, A2 # 0 and we get

vig (A2 + M12QA2)Qnp
vig (m + M12Qn2)

E(Y,)=n — E + O("), where E = and |e| < 1. (5.8)

EY,) = E' + O("), where E' =

(lel < 1). (5.9)

Note that both E and E' are strictly positive since Q > 0. Now the problem is to determine
conditions that guarantee y; # 0.

5.2.2 Variability conditions

To answer the previous questions we first recall that, by Theorem 4.13, 4, # 0 # By implies 1 # 0.
Thus, by Proposition 5.3, we know that if A\; > A2 and A; # 0 # By, then Var(Y,,) = vin + O(1)
with v; > 0.

Clearly, if either A; = 0 or B; = 0, then 73 = 0 and the question is whether Var(Y,,) keeps
away from 0. To study the variability condition in this case (the degenerate dominant case), it is
convenient to express the variance by means of polynomials and to extend Lemma 4.12 to matrices.
We recall that given a non-null polynomial p(z) = ), prz®, where p, € Ry for each k, we use
V(p) to denote the variance of any r.v. X, such that P{X, = k} = %. Analogously, we introduce
the following notation: given a matrix M (z) of polynomials in the variable z with non-negative
coefficients, we can define its matrix of variances as



Then, for each finite family of matrices {M*)(z)}rer having equal size and non-null polynomial
entries, the following relation holds

— (®) (1),
v (Z M(k)(:v)> > lz ZM M((Bl(Jl).,V(M(k)(w)ij)] .
kel ~s€l K

kel

Moreover, if M (z) and N(z) are matrices of non-null polynomials of suitable sizes, then

V (M(z) - N(z) 2 [Z B v (o)) + v<N<:c)k,-)}] AT
k

ij
We are able to establish the variability condition in the dominant degenerate case.

Proposition 5.4 If M5 # 0, Ay > Ay and either By = 0 or A; = 0, then Var(Y,) = ¢+ O(e™)
for some ¢ >0 and || < 1.

Proof. First observe that the asymptotic expression of the variance given in Proposition 5.3 can
be refined as

Var(Y,) =mn+c+ O0(e™) (5.11)
where ¢ is a constant and |e| < 1. This is due to the fact that, by equation (4.7), the variance
depends on the sequences r,(0),r/,(0),7.(0), which have generating function with a pole of smallest
modulus at A] ! of degree (at most) 1, 2, 3, respectively: hence their asymptotic expressions are
A AT+0(p"), ban A"+ AT +0(p™), agn® A" +b3n A" +c3 AT +0(p™), respectively, for some constants
ai, bi,¢; and |p| < 1; thus, equation (5.11) follows from Proposition 5.3 by replacing the previous
expressions in (4.7). In particular the constant ¢ is determined by the values ¢;, 1 = 1,2, 3.

Now, by our hypothesis, since either By = 0 or A; = 0 we have 74 = 0 and we only have to
prove ¢ > 0. To this end we show that Var(Y,,) > ©(1). Consider the case B; = 0 and first assume
Az # 0. Note that, by the significance hypothesis also By # 0 holds, and hence v, > 0. Moreover,
we have

VCLT(YH) =V (ngA?nlxn + ngGn(w)TI? + €2T (AZ'Z- + BZ)HTI?)

where
n—1 o )
G"(Z') = Z Aia:’(Alga: + Blg)(AQx + BQ)niliz;
i=0
hence, by Lemma 4.12 we get
S2r M3 2 E1p Son g A{ M MY~ "y,
Var(Y,) > 222" (von + O(1)) + 1= V(&,:Grn(x)n) . 5.12
() > S 2 (an + O(1) i (E:Gale)m) - (512)

Applying again Lemma 4.12 and equation (5.10), we also obtain

n-l i n—1—1
. A Mis M. ,
V(& Gn(z)n2) > min E ij 129 n_zj_ks
pard (2320 A$ Mo M )

V(Asz + By)" ')
= (ik)er (V(422 + B2) )

jk

where I = {(j, k) | &;Gn(x)jkn2, # 0}. Now, note that from Theorem 4.13 one can deduce that,
for every primitive matrix M = A+ B, if A # 0 # B, then V(Az + B)";; = ©(n) for any pair of
indices %, j. Thus, replacing the previous value in (5.12), we get

Var(Y,) > © (Z?ﬂl XA ”) —0(1).

AT
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On the other hand, if As = 0 we have

_ E1p My + &1, M Agong
& M™n

Moreover, equation (5.8) implies E(Y,,) = n — E + O(e™), where E > 0, and hence

P, {Y, =n} =0(1).

(E— k)P, {Y,, =n—k}+0(") > E?°P,{Y,, =n} + 0(c") = O(1)

NE

Var(Yy,) =

~
Il

0

which completes the proof in the case B; = 0.

Now, let us study the case A; = 0. If By # 0, then Var(Yn(z)) = O(n) and the result can be
proved as in the case By = 0 with Ay # 0. If By = 0, then by using (5.9) we can argue as in the
case B; = 0 with 45 = 0. O

5.2.3 Limit distribution

Now we study the limit distribution of {Y,} in the case A\; > Ay still assuming M;2 # 0. If the
dominant component is not degenerate we obtain a Gaussian limit distribution as in the primitive
case. On the contrary, if the dominant component is degenerate we obtain a limit distribution that
may assume a large variety of forms, mainly depending on the second component. In both cases
the proof is based on the analysis of the characteristic function of Y, that is 7, (it)/r,(0).

Again, recalling that r,(z) = ri (2) + sn(z) + ri? (2), we can apply Corollary 4.8 to i) (2)
for ¢ = 1,2, and we need an analogous result for s,(z). First consider the generating function of
{sn(2)}, that is

&1,.8(z, w)ne = Z sn(z)w™ = £, RV (2,w) (A12¢* + Bya)w R® (z,w)n, (5.13)

By applying Proposition 4.7 to R(1), since A\; > )y, for every z near 0, we get

_ &, F1(2) (Arze® + Bio) y1(2) ™ R (2,91(2) " )me
ngs(sz),rp_ ].—yl(Z)'LU

+0(1)

as w tends to y;(2)~!. The contribution of both r%l) and s, yields a quasi-power condition for Y,,.
Proposition 5.5 If M1, # 0 and Ay > Aa, then for every z near 0, as n tends to infinity we have

where p < |y1(2)| and f(2) is a rational function given by

F(2) = € Fa(2) {m + (Aize” + Bio) i ()™ B (2,50(2) e} -

Observe that the function f(z) is analytic and non-null at z = 0. If A; # 0 # By, then 8 > 0,
v > 0 and by the previous proposition we can apply the Quasi-power Theorem which yields the
following

Theorem 5.6 If Mys # 0, A\; > A2 and Ay # 0 # By, then % converges in distribution to a
normal r.v. of mean 0 and variance 1.
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On the other hand, if either A3 = 0 or B; = 0, then 73 = 0 and the Quasi-power Theorem
cannot be applied. Thus, we study two cases separately, dealing directly with the characteristic
function of {Y,,}.

Let B; =0 and set Z, =n —Y,. We have r,,(z) = rid) (2) + sn(z) + r? (z), where

r(2) = & (Mie*)"m = (\e*) &1, (wvr, + Cr(n))m
n—1
sn(2) = D (M€ &ip(urvi, + Ci(n)) (Arae® + Bra)(Aze” + Bo)" ' iy
7=0
rP(2) = &, (Are” + Ba)"na

Hence the characteristic function of Z, can be computed by replacing the previous values in

E(e*%n) = e*r,(2)/rn(0). A simple computation shows that, as n goes to +oc, for every t € R

we have ) )

'UlTnl + 'UIT(A() + Boe’t)()\ll - A2 - BQGZt)_l’I’IQ
of (m + MoQna)

Note that by the significance hypothesis (5.3) this function cannot reduce to a constant. The case

A; =0 can be treated in a similar way. Hence we have proved the following

Theorem 5.7 Let M15 # 0 and Ay > Xo. If By = 0, then n — Y, converges in distribution to a
random variable W of characteristic function

E(eitZn) =

+o(1) .

Ve + V1, (Ar2 + Biae®) (M I — Ay — Bae®t) 1n,
V1 (M + M12Q12) '

If Ay =0, then Y, converges in distribution to a random variable Z of characteristic function

Vg + V1, (Ar2e + Bia) (M I — Ase®t — By) iy
vig(m + M12Qn2)

Now, let us discuss the form of the r.v.’s W and Z introduced in the previous theorem. The

simplest cases occur when the matrices M; and M> have size 1 X 1 and hence M; = A1, My = Ao

and both A, and By are constants. In this case W = R(S + G), where R and S are Bernoullian
r.v. of parameter p, and ps, respectively given by

Mia(M — )\2)_1712
m + Mia(A1 — A2) "1

while G is a geometric r.v. of parameter Ba/(\; — Az). Clearly a similar expression holds for Z.

Moreover, in the product model W and Z further reduce to simple geometric r.v.’s (still in the
monodimensional case). More precisely, if (&, u,n) is defined as in Example 5.2 and both M; and
M5 have size 1 x 1, then one can prove that

Py (t) =

B4(t) = (5.14)

Dr = and pPs = B12/M12 >

1- )\A2 1- )\BQA

—_ 1 2 J— 1— A2
‘bz(t) - 1_ 5 A2 eit and CI)W(t) - 11— N B2A eit

1— 2 1— A2

which are the characteristic functions of geometric r.v.’s of parameter /\1’3232 and x B2A respec-

tively.

However, the range of possible forms of W and Z is much richer than a simple geometric
behaviour. To see this fact consider the function ®z(¢) in (5.14); in the product model it can be
expressed in the form

Top (AT — Aze® — i 7T2T (Ma/X2)" 72 - (A2 /A1)
7T2T(/\1[ M2 17’2 0 71'2T (Mz//\2) T2 - (/\2/)\1)Z

(1)

<I>Yj(2) (t)
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Pr{Nsj } Pr{N=j }

50 100 150 200’ 50 100 150 200/

Figure 5.1: Probability law of the r.v. N defined in (5.15), for 5 = 0,1,...,200. In the first picture we
compare the case p = 0.00001 and g = —0.89. In the second one we compare the case g = 0.00001 and
p = +0.89.

where 73 and 75 are defined as in Example 5.2. This characteristic function actually describes a
r.v. YJSJQ), where N is a r.v. with probability law

mor Mo/ X - Qa/N)
Yo Tar (Ma/X2)" 72 - (A2/M)!

If B, = 0, then by (5.14) Z reduces to N, and an example of the rich range of its possible
forms is shown by considering the case where (4; = 0 = By) Ay = 1.009, A2 = 1, and the second
component is represented by a generic (2 x 2) - matrix whose eigenvalues are 1 and p such that
—1 < pu < 1. In this case, since the two main eigenvalues have similar values, the behaviour
of Pr{N = j} for small j depends on the second component and in particular on its smallest
eigenvalue u. In Figure 5.1 we plot the probability law of N defined in (5.15) for j = 0,1,...,200
in three cases: p = —0.89, = 0.00001 and g = 0.89; the first picture compares the curves in the
cases = —0.89 and p = 0.00001, while the second picture compares the curves when g = 0.00001
and g = 0.89. Note that in the second case, when g is almost null, we find a distribution similar
to a geometric law while, for 4 = —0.89 and p = 0.89, we get a quite different behaviour which
approximates the previous one for large values of j.

Po{N =j} =

(5.15)

5.2.4 'What changes in the sum model?

Under the hypothesis Ay > Ay and A; # 0 # By, the condition M;2 # 0 does not play a funda-
mental role. Indeed, the proofs of Sections 5.2.1 and 5.2.3 can be perfectly adapted to the case
M2 = 0. Thus the following theorem holds.

Theorem 5.8 In the sum model, if A1 > A2 and A; # 0 # B1, then
1)
E(Ya) = fin+ = +0E"),  Var(¥y) =mn+0(1) (lel < 1),
1

where oy, 1, Y1, 01 are the constants associated with the first component defined as in Theorem

4.9. Moreover, Y:/fy%" converges in distribution to a normal r.v. of mean 0 and variance 1.

On the contrary, if the dominant component is degenerate, then the sum model differs sig-
nificantly from the general model. If B; = 0, then f; = 1 and 73 = §; = 0, hence we get
E(Y,) = n+ O(e™). On the other hand, if A; = 0, then 8; = 71 = d; = 0 and hence we get
E(Y,) = O(¢™). In both cases we have y; = 0 and a direct computation proves Var(Y,) = O(e"),
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showing that Y;, almost surely reduces to a single value (n or 0, respectively). In fact, by Cheby-
shev’s inequality, if B; = 0 we have for every ¢ > 0

Ya
P.{|lY, —n|>c} < M =

A similar result can be obtained in the case 4; = 0.

Theorem 5.9 In the sum model, assume Ay > Ay. If By =0, then lim, oo Pp{n —Y, >c} =1;
if Ay =0, then lim,, 00 Pp{Y, >c} =1.

5.3 Equipotent components

Now, we study the behaviour of Y, in the case A; = A2. Then two main subcases arise. The first
one occurs when the constants 5; and s are different. Then the variance is of a quadratic order
showing there is not a concentration phenomenon around the average value of our statistics. In this
case, except for the sum model, we get a uniform limit distribution between the mean constants
associated with the two components.

However, if the mean constants are equal, then the variance reduces to a linear order of growth
and we have again a concentration phenomenon. In this case the limit distribution depends on the
main terms of the variances associated with the two components: if they are equal we obtain a
Gaussian limit distribution again; if they are different we obtain a limit distribution defined by a
mixture of Gaussian random variables.

We first assume Mo # 0, while the sum model is considered in Section 5.3.3. In this case, the
contributions of both components are isolated and this yields to different results with respect to
the case M2 # 0.

As before we begin studying the asymptotic behaviour of the moments of Y,, and then we
determine the limit distributions.

5.3.1 Analysis of moments

We argue as in Section 5.2.1; for this reason we avoid many details and give simple outline of the
proofs. For the sake of simplicity let A = A; = Aq.

Proposition 5.10 Assume A\; = Ay = X and let M5 # 0. Then the following statements hold:
1. If By # Bo, then B(Y,) = 882 n 4+ O(1) and Var(V,) = E282° n2 4 O(n);

2. If 1 = B2 = B, then E(Y,,) = Bn + O(1) and Var(Y,,) = 2422 n + O(1), where v; > 0 for
each i € {1,2}.

Proof. First consider the case f1 # (2. In order to evaluate s,(0), s,(0) and s/:(0), one can
proceed as in the dominant case, considering the bivariate function S(z,w) defined in (5.5) and
then applying the results of Section 4.4.1 to R™M(0,w) and R®(0,w). It turns out that, in a
neighbourhood of w = 1/, both R™ (0, w) and R® (0, w) admit Laurent expansions of degree 1,
while the matrices S(0,w), S, (0,w) and S, (0, w) admit a Laurent expansion of degree 2, 3 and 4,
respectively. Thus, in equation (5.6) the main contribution to the behaviour of r,(0) is given by
the term s,,(0) and this is true for derivatives, too. This leads to the following expressions, holding
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as n tends to infinity:

M
mm(0) = nA"-&ipur vig % up vap M2 + O(A")
M
r(0) = n’A". b ;ﬂz =€y pUp V1, % uz va,.M2 + O(NA") |
2 2
M
r%((]) = n3/\" . % . ngul Vip % Uy Vap Ty + O(n2)\n) .

Point 1. now follows from relation (4.7).

If 8y = B2 = B, the previous evaluations yield E(Y,,) = 8n + O(1) but Var(Y,,) = O(n). Then,
terms of lower order are now necessary to evaluate the variance. These can be obtained as above
by a singularity analysis of S(0,w), S.(0,w) and S,,(0,w) and observing that SC; = 8C> = 0.
The overall computation leads to the following relations:

V1 M12Dana &1 D1 Mypus V1 A12us }
EY,) = n-8 + - + O(e"
( ) B {U1TM12U2U2T772 §1TU101TM12U2 UlTM12U2 B ( )
ACrA A1C1A +
Var(Y,) = n- (B—,B2 + V2 % Uy + V1, % ul) + 01 =2 . 2 n+0(1).

for |e| < 1. Finally observe that, since 81 = f32 the significance condition (5.3) implies A; # 0 # B;
for each 7 = 1,2 and hence also v; # 0. m|

Referring to the variability condition, observe that the previous proposition states that if 3; #
B2, then the variance is of order ©(n?), while if 8; = /35 the variance is of order ©(n) and moreover
it is intuitively an average value of the variances associated with the two components.

5.3.2 Limit distribution

To study the limit distribution in the equipotent case (A; = A2 = ) with the assumption M;, # 0,
we consider again the characteristic function of Y,,, that is 7, (it) /r,(0). In this case, we do not
obtain a quasi-power condition, since the contribution of s,(z) to the behaviour of r,(z) has a
different form.

Recalling that r,(z) = i) (2) +sn(2) +rd (2), we can apply Corollary 4.8 to rid (2) fori =1,2.
As far as the sequence {s,(z)} is concerned, consider its generating function &, S(z,w)n. defined
in (5.13). Then, let us apply Proposition (4.7) to R") and R®) and define the analytic function

f(z) = & Fi(2)(A12€” + Bi2) Fa (2)n2 (5.16)
We have f(0) # 0 and, since \; = A = A, for every z near 0 we get
W _ f(z)w 1 1
€12.5(z, w)ne 0w d—n@w " 0 <1 — yl(z)w) +0 <71 — yz(z)w) +0(1)  (5.17)
oo n—1 . N 1 1
= O L e 0 () +0 () o0

as w tends to A~L. Thus, at z = 0, since y;(0) = y2(0) = )\ we get
r(0) = £(0) - nA™ ! + O(A™). (5.18)

However, for z # 0, the asymptotic behaviours of s, (z) depends on the condition 8; # B2.
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Proposition 5.11 If M1s # 0, Ay = A2 = X and (1 # B2, then for every z near 0, different from
0, we have

y1(2)" —y2(2)"
(B1 — B2)z + O(2?)

rn(2) = f(2) - 5 + 0 (51(2)") + O(y2(2)") + O(p"),

where 0 < p < A,

Proof. Since 81 # [32, from (5.17) we get, for any z near 0 different from 0

sale) = 1) LELZE 0.4+ 0 ((2)") + 06" (5.19)

Also observe that, by Corollary (4.10), for any ¢ = 1,2 and every z near 0 we can write
yi(2) = A+ ABiz + O(2%). (5.20)

Hence, the result follows by replacing the previous relations into (5.19) and observing that the
contribution of r” () and r? (2) is of the order O(y1(2)") and O(y=2(2)"), respectively. O

In the following theorem we determine the limit distribution of Y;,/n.

Theorem 5.12 If M1s # 0, At = A2 = X and By # P2, then Y, /n converges in distribution to a
r.v. uniformly distributed over the interval [by,bs], where by = min{f1, B2} and ba = max{f;, f2}.

Proof. By Proposition 5.11 and equation (5.20), for every t € Rt # 0, as n tends to infinity, we

have
Tn (E) = £(0) -nA"!

n

(1+2+0(H) - (1+ 210 (L

it(B1 — B2) + O (%)
Thus, the last equation yields the following expression for the characteristic function of Y;,/n:
. ra(it/n)  eftPr — eitB2 (1)
E(itY;, /n) = = == +0(—-).
G/ ="~ - " O\n

The theorem is proved observing that the main term of the right hand side is the characteristic
function of a uniform distribution in the required interval. O

) oy

Now, let us consider the case 8; = f2 = 8. Then point 2. of Proposition 5.10 holds and hence
there is a concentration phenomenon around the mean value of Y,,. The limit distribution can be
deduced from equation (5.19), which still holds in our case but assumes different forms according
whether v, # 2 or not. In the following, let v be defined by v = MT”

Theorem 5.13 If Mys #0, Ay = Ao, B1 = B2 and v # 72, then Y= —pn converges in distribution

e
to a r.v. T of characteristic function
2242 _ 2142
e 27 —e v
2y 2y

Proof. First observe that in our case, for ¢ = 1,2,

yi(z) = A (1 + Bz + #22 + O(z3)) .
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Hence, by replacing these values into (5.19), we get for each ¢ € R different from 0

it e_;_%2 e_;/_lt2
. — £(0)-pAm L. eiBt/n/y E T T8 T () o 1/2
(Wn) F0) - mX™ e Eope (Lrom)

where f(z) is defined as in (5.16). The required result follows from the previous equation and from

relation (5.18), recalling that e *? vy, Tn (\/’t_) /7 (0) is the characteristic function of Y=-8n
0 n Vv

By direct inspection, one can see that the probability density corresponding to the characteristic
function (5.21) is a mixture of Gaussian densities of mean 0 and variances uniformly distributed in

the interval [c1, ¢2], where ¢; = min{~;,7;} and ¢2 = max{~;,;} In other words, Y"—W_Lﬂ" converges
in law to a random variable with density function

1 c2 67w2/(2v)
Or(t) = dv .
T( ) c2—C1 J, V2w v

Finally we deal with the case where also the main terms of the variances are equal.

(5.22)

Theorem 5.14 If M5 # 0, Ay = A2, f1 = P2 and 1 = 72, then Yﬁ/;ii" converges in distribution

to a mormal r.v. of mean 0 and variance 1.

Proof. In this case, for z = ©(n~'/?), the convolution in (5.17) satisfies the equation

n—1 ) 1
Z y1(2) y2(2)" 1 = nAn! (1 + Bz + 7 zﬂ z2> (14 0(z3))" L.
=0

Replacing this value in the same equation, we get

- < it ) = £(0) - nA"exp {iﬂtﬁ— %} (1 +O(n_1/2)).

I
Hence, reasoning as in the previous proof one can see that the characteristic function of %
2 /¢
converges to et /2, O

We conclude with some examples which illustrate the result obtained in the equipotent case
when 1 = S5.

Example 5.15 In Figure 5.2 we illustrate the form of the limit distributions obtained in Theorems
5.13 and 5.14. We represent the density of the r.v. having characteristic function (5.21), for
different values of the ratio p = v2/v1. When p approaches 1, the curve tends to a Gaussian
density according to Theorem 5.14; if 5 is much greater than -, then we find a density with a
cuspid in the origin corresponding to Theorem 5.13. |

Example 5.16 One may also ask whether the hypotheses of Theorem 5.13 are satisfied for some

pairs of primitive linear representations. As an example of such a pair, consider the triple (&1, p1,71)
where

fr=m = ( 1(/]2 ) o Ar=pm(e) = ( ?ﬁg 9/140 ) o Bi=m®)= ( 3(/)5 21(/J40 )
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Figure 5.2: The first picture represents the density of the r.v. having characteristic function (5.21),
according to the parameter p = 72/v1. The second picture represents some sections obtained for p =
1.0001, 5,15, 50, 20000.

and the triple (&2, p2,72) such that & = & = s,

3/40 1 27/40 0
Az:’”(a):(lfm 3/10)’ and BF“Q(b):( é 9/20)'

In this case M; = M, and hence A\; = Ay; moreover, by direct computation one can show that

Br = B2 = 7/16, while v, = 28 and 7, = 1239 Thus the hypotheses of the theorem are satisfied

for any possible non-negative value of Mi5 # 0. |

5.3.3 'What changes in the sum model?

When Ay = Mg, the separation of the components expressed by the condition Mi2 = 0 plays a
relevant role. Indeed, when M;s # 0, the main contribution to the behaviour of r,(0) was given
by s,,(0), which here vanishes since

ra(z) =10 (2) + 1) (2).
Proposition 5.17 In the sum model, assume Ay = A2. If B1 # B2, then
a181 + axfa 5 aiaz (B1 — ﬂ2)2
EY,) =n ———"= 1), Y,)=n" —"—— """ .
Y,)=n ot + 0(1) Var(Y,) =n (on T o)? + O(n)
If B1 = B2 = B, then

EY,) =n-8 + OQ1), Var(Y,) :n-w

a1 + as

+ 0(1) .
Proof. First note that ri) (0), ri? (0) and their derivatives satisfy the properties stated in Section

4.4.1. Hence, the result follows from equation (4.7), by a simple computation. a

Now, let us study the limit distribution. Let U, be the Bernoullian random variable U, : 2, —
{0,1} such that for each £ € Q,

Un(6) = 1 if £ is entirely contained in the first component,
"Y1 0 if £ is entirely contained in the second component.
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It is easy to show that

P.{U, =1z} =

M? .
S2p My m2 ifz=0.

Furthermore, let L, = 81U, + B2(1 — U,) and observe that if $; = 32, then L, = 81 = $>. Also
notice that L, converges in distribution to a random variable ;U + B2(1 — U), where U is a
Bernoullian r.v. of parameter p = a1 /(a1 + a3).

Proposition 5.18 In the sum model, if \y = Az, then the distribution of Y, /n converges to the

distribution having probability mass al‘f:@ at B1 and probability mass afﬁw at Bs.

Proof. We first evaluate the variance of Y,, —nL,,. Clearly Y,, and L,, are not independent, but we
can express their dependence by writing Y,, = U, v 4+ +(Q1 Un)Yn(z) and hence

Yo —=nL, = U,- (VY =npi) + (1=U,) - (¥P —nps) .
Moreover, by the previous proposition IE(Y —nL,) =0(1) and so

Var(Y, —nL,) = E((Y, —nL,) = > E((Yn —nLyn)® | Up = i) - Po{U, =i} + O(1)
i=0,1
= E(V.@ — ng)2). % )= p. 0o Ty e
> B = nBy)’) - 4 0(1) =0 TR 1 0()

j=1,2

The result is a consequence of Chebyshev’s inequality: for every ¢ > 0 one gets
Y, 1
n n

The above proposition intuitively states that Y;, asymptotically behaves as nL,,, where L, may
only assume two values. Thus, a natural question concerns the limit distribution of Y,, — nL,. To
deal with this problem assume v; # 0 # 72 and consider the r.v. YT constructed by considering
a Bernoullian r.v. U of parameter p = a1/(a1 + az), two normal r.v.’s Ny, Ny of mean 0 and
variance ; and 7ys, respectively, and setting
where we assume U, Ny, N, independent of one another. Note that, if v; = 72, then T is a normal
r.v. of mean 0 and variance «;. The characteristic function of Y is given by

E(eitT) = e I
a1 + oo a1 + ag
Proposition 5.19 In the sum model, if A\ = A2 and v, # 0 # 72, then the distribution of Y"_i\/%L"
converges to the mizture, with weights al‘ilw and a1a+2az’ of two normal distributions with mean
zero and variance 1 and 2 respectively. In particular, if y1 = v = 7, then 2 \/%L" converges in
law to a standard normal random variable.

O

Proof. Let us define the r.v. T,, = Y"_i\/%[’" Its characteristic function is given by

]E(eitT") = Z ]E(eitT" | U, = 7/) n{Un = 7’} = Z E( (])_nﬁ ) . (L + O(en))

le’ lo’
i=0,1 j=1,2 1+
al 2142 a2 7242 _
= e 2t + e” 3t 4 O(n 1/2) .
o1 + oo o1 + o
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The previous results hold even if f; = 2 = f; notice that in that case L, reduces to the
constant 3 and v # 0 # 72 otherwise either A = 0 or B = 0. Hence we obtain the following

Corollary 5.20 In the sum model, assume Ay = Ay and B1 = B2 = B. Then the distribution of

Y";\/F:Lﬁ converges to the mizture, with weights al(fi-laz and a;fag’ of two normal distributions with
mean zero and variance v, and 2 respectively. In particular, if y1 = v2 = 7y, then Y"%ﬂ'f converges

in law to a standard normal random variable.

5.4 Summary

The results presented in this chapter are summarized in Table 5.1. To explain them intuitively,
recall that in our model each component is primitive and hence, considered separately, it yields a
Gaussian limit distribution. Thus, the behaviour of the overall model derives from the relation-
ship between these two components. Depending on how their separate contributions mix together,
we get quite different limit distributions. This combination depends on two main conditions: (7)
whether there is a communication from the first to the second component (i.e. Mys # 0) and (1)
whether there exists a dominant component (i.e. Ay > A2 or viceversa). The analysis of the domi-
nant case splits in two further directions according whether the dominant component is degenerate
or not. The equipotent case (occurring when A\; = \;) has several subcases corresponding to the
possible differences between the leading terms of the mean values and of the variances associated
with each component.

We obtain Gaussian limit distributions only when the dominant component does not degenerate
and hence we can neglect the other component, or when the two components essentially have the
same asymptotic behaviour (i.e. in the equipotent case with equal leading terms of mean values
and variances).

Notice that the existence of a connection between the two components is less relevant when
one is dominant. Therefore, condition (7) concerning the matrix M2 is meaningful mainly in the
equipotent case. Here, if M2 # 0 the main contribution to the bivariate generating function is
given by S(z,w), which represents the connection from the first to the second component and is
essentially given by the convolution of the two contributions. On the contrary, when M5 = 0 the
function S(z,w) vanishes and the two components contribute separately to the overall behaviour
of the system.

As a consequence, when the leading terms of the mean values are different, we get a uniform
limit distribution in the case M12 # 0, while, if M;5 = 0, we obtain a limit distribution concentrated
in two values that correspond to the separate components. Analogously, when the main terms of
the average values are equal but the leading terms of the variances are different, we get a mixture
of Gaussian distributions having the same mean value: if M;5 # 0 such distributions have variance
uniformly distributed over a given interval; on the contrary, if M2 = 0 they reduce to two Gaussian
distributions, with variances corresponding to the separate components.

We observe that the dominance condition (i) plays a key role to determine the limit distribu-
tion in two main cases of the previous classification: the dominant non-degenerate case and the
equipotent case with different leading terms of the mean values. To illustrate its role we present
the following example.

Example 5.21 Consider the product model of Example 5.2 and define the “factor” components
(mi,v4,7i), 1 = 1,2, by means of the weighted finite automata described in Figure 5.3. The matrices
A; = vi(a) and B; = v;(b) are defined by the labels associated with transitions in the pictures.
The values of the components of the arrays 7; and 7; are included in the corresponding states.
Multiplying the matrices A; = v;(a) and B; = v;(b) (for i = 1,2) by suitable factors, it is possible
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Conditions Results
| Dominance | Degeneracy Mean value | Variance | Limit distribution
A1 > Ao A #0# By Bin + O(1) 1nn+ 0(1) Y";—\/liﬁbn —a No
0<p <1 0<m
B =0 n—E+0(") c+ 0(e") n-Y, —sW
E>0 c>0 Theorem 5.7
A =0 E'+0(") ¢ +0(m) Y, —a4Z
Mis £0 E'>0 d>0 Theorem 5.7
Bi# B || Btnt0() | L=B2ln2 4 On) | X2 —s, Unif(by, by)
Theorem 5.12
M=X | fi=ph=8| Bn+0() yn+0(1) et —a T
" FE V2 y=2ntn Theorem 5.13
pr=p2=8 pn+ O(1) yn+ O(1) Y’:/;—ﬁ” —a Noj
M =7"=7
A £0+# B, Bin + 0O(1) yn+ 0(1) Y;—Ji;" —a Noa
0< ,31 <1 0< Y
A1 > Ao B =0 n+ O(e™) O(e") n—Y, —,0
Theorem 5.9
A1 =0 O(e™) O(e™) Y, —,0
Theorem 5.9
M5 =0 51 75 B cin + 0(1) CQTL2 + O(n) Y—T; —d
Ry
o=alimi | o= 2@l | AU+ R1-D)
Proposition 5.18
M=X | fi=p=4 Bn + O(1) esn + 0(1) L\/ﬁf‘" —
Y F V2 g =123 | UNoy, + (1= U)Nojy,
Corollary 5.20
Br=p=8| Bn+0(1) m+0(1) T2t —i Nog
Y1=72 =7 Corollary 5.20

Table 5.1: This table summarizes most results presented in this chapter. To specify the limit distributions
in some cases we refer to theorems proved in the previous sections. Moreover, we use N,,,s and U to denote,
respectively, a normal random variable of mean m and variance s and a Bernoullian r.v. of parameter
p=oa1/(on + az2).
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to build from (5.7) a family of primitive linear representations (£, u,n) where we may have Ay = Ao
or A1 # Xo. In all cases, it turns out that f; = (1+ (1 +v/2)?)~! ~ 0.146 and B> = 11/15 ~ 0.733
(and hence 81 # B2). Figure 5.4 illustrates the probability function of the r.v. Yjq in three different
cases. If A\; = 2 and A2 = 1 we find a normal density of mean asymptotic to 50 f;. If Ay =1
and Ay = 2 we have a normal density of mean asymptotic to 50 f2. Both situations correspond
to Theorem 5.6. If A\; = Ay = 1, we recognize the convergence to the uniform distribution in the

interval [50 (1, 50 B3] according to Theorem 5.12. a
(a 14) (b1)
/\ /’/\
—_—
S L VI

Figure 5.3: Two weighted finite automata over the alphabet {a, b}, defining the primitive linear represen-
tations (i, vi,7), @ = 1,2.

Pr { Yso :k}

o of o o® ee, %ol K

| [

Figure 5.4: Probability functions of Y5 in the product model where the two factor components are defined
by Figure 5.3 with weighted expanded by a constant factor. The vertical bars have abscissas 508; and
5082. The curves correspond to the cases where (A1, A2) are equal to (2,1), (1,2) and (1,1), respectively.

We conclude observing that some of the previous results clearly extend to rational stochastic
models given by more than two primitive components. For instance the result given in Theorem
5.6 also holds in the multicomponent case when only one dominant component exists and this
is not degenerate. Analogously, if two (non-degenerate) equipotent components dominate the
others, then a result similar to Theorem 5.12 or Proposition 5.19 holds (according whether there
exists a communication from the first to the second component). However, it is clear that in the
multicomponent model the number of subcases grows exponentially: more than two equipotent
components can dominate the others and the limit distribution depends also on the geometry of
communication among them; further, with more than one dominant component, several degenerate
cases can occur and the limit distribution might depend on the dominated components too. For
these reasons, a significant analysis of the general multicomponent model have be to based on an
approach quite different from those used so far. This will be the goal of next chapter.
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Chapter 6

Multicomponent models

Up to now, the RSF has been studied only in the primitive models or in models consisting in two
primitive components. In this chapter we present a general approach to the analysis of arbitrary
rational models, explicitly establishing the limit distribution in the most significant cases. Such
analysis is based on the decomposition of the linear representation defining the model into strongly
connected components. This is a usual approach in the analysis of counting problems on regular
languages (see for instance [29] for an application concerning trace languages).

The section is organized as follows. In Section 6.1 we show how an arbitrary model can be
decomposed and we introduce the notions of main chain and simple model. The role of main chains
is then the object of Section 6.2. Under a special assumption on the main chain, in Section 6.3 we
determine the limit distributions of pattern statistics for simple models; they are characterized by
an interesting family of unimodal density functions defined by polynomials over adjacent intervals.
Finally in Section 6.4 we extend the results to all simple models and also provide a natural method
to determine the limit distribution in the general case.

6.1 Decomposition of a rational model

Let (&, p,n) be a linear representation over the alphabet {a,b} and let Y, count the number of
occurrences of a in the stochastic model defined by the corresponding rational series. Using the
notation of the previous chapters, set A = u(a), B = u(b), M = A + B. Then, consider the
incidence graph of M and let Cy,Ch,...,Cs be its strongly connected components. We define Cj
initial (resp. final) if &, # 0 (resp. np # 0) for some p € C;. As in Section 2.2, the reduced graph
of (&, u,n) is then the directed acyclic graph G where Cy,Cs, ..., Cs are the vertices and any pair
(C;,Cy) is an edge if and only if ¢ # j and M, # 0 for some p € C; and some ¢ € Cj.

Hence, up to a permutation of indices, the matrix M can be represented as a triangular block
matrix of the form

My My Ms --- M
mM=| 0 ]}/{2‘3 o Mo (6.1)
0O 0 0 - M,

where each M; corresponds to the strongly connected component C; and every M;; corresponds
to the transitions from vertices of C; to vertices of C; in the incident graph of M. Also A, B, ¢
and 7 admit similar decompositions: we define the matrices A;, A;;, B;, B;; and the vectors &;,n;
in the corresponding way and we say that the component C; is degenerate if A; =0 or B; = 0. To
each M; we can apply the Perron—Frobenius Theorem for irreducible matrices, hence we know that
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each M; has a nonnegative real eigenvalue A; of maximum modulus. We call main eigenvalue of
M the value A = max{\; |i=1,2,...,s} and we say that C; is a dominant component if A\; = \.
Observe that A; = 0 only if C; reduces to a loopless single node and hence from now on we assume
A > 0. If further M; is primitive, we say that C; is a primitive component.

The block decomposition of M induces a decomposition of the matrix R(z,w) defined in (4.11).
More precisely, the blocks under the diagonal are all null, while the upper triangular part is
composed by a family of matrices, say R;;(z,w), 1 <i < j < s. Note that the bivariate generating
function r(z,w) = £, R(z,w) n, which is the main tool of our investigation, is now given by

r(zw) = (A + B)"n-w" = Y & Rij(z,w)n; . (6.2)
n=0 1<i<j<s

Setting M;;(z) = A;je* + B;; and reasoning by induction on j — 4, one can prove that, for each
1<i<j<s,

I —w(Aze” + By))™! if j =

Rii(z,w) = ( ‘ ' A 6.3
”( ) { ZRZ'1Z'1 (z7w)Mi1i2 (Z)Riziz (Z,UJ) U Mie—ﬂ'e (Z)Rizie (z,w) cwtif J 79 ? ( )
where the sum is extended over all sequences of integers (i1,%2,...,%¢), £ > 2 such that i; = 4,

iy <iyyq foreacht=1,...,£—1 and iy = j.

Equation (6.3) suggests us to introduce the notion of chain of the reduced graph G associated
with (&, u,m). A chain is a simple path in G, i.e. any sequence of distinct components kK =
(Ciy,Ciys ..., Cyy), £ > 1, such that M;,;,,, # 0 for every j =1,2,...,£ — 1. We say that £ is the
length of k while the order of x is the number of its dominant components. We denote by I' the
family of all chains in G starting with an initial component and ending with a final component.
We say that a chain & is main chain if kK € T and its order is maximal in I'. We denote by I';,, the
set of all main chains in G.

In Section 6.2 we show how the main chains determine the limit distribution of the sequence
{Y,} associated with the linear representation (&, u,n). Intuitively, this is a consequence of two
facts. First, the characteristic function of (a normalization of) Y,, depends on the sequences {r,(z)}
for z near 0, and hence on the generating function r(z,w). Second, by (6.2), this function is a sum
of products like those in (6.3), each of which is identified by a chain: the products corresponding
to the main chains have singularities of smallest modulus with the largest degree, and hence they
yield the main asymptotic contribution to the associated sequence {r,(z)}.

The relevance of main chains leads to study the simple but representative case when the model
has just one main chain, say . In this case, the properties of Y,, first depend on the order k
of k, i.e. the number of its dominant components. We first determine the limit distribution of
Y, when all dominant components of k are primitive, non-degenerate and have distinct mean
constants. A similar approach can be developed when the above mean constants are partially or
totally coincident.

For this reason we introduce the notion of simple model. Formally, we say that (&, u,n) is a
simple linear representation, or just a simple model, if I, contains only one chain s and, for every
dominant component C; in k, M; primitive and A; # 0 # B; (for instance, if M is primitive, then
it defines a simple model with main chain of length 1). Note that, for such matrix M;, we can
define the mean constant 8; and the variance constants 7; as in (4.17),0 < 8; <1 and ; > 0.

If the order of k is 2 or lower than 2, then the limit distribution derives from the analysis of
primitive and bicomponent models given in Chapters 4 and 5, respectively:

e If k has only one dominant component C;, then the limit distribution of Y"_T/in” is a Gaussian
distribution of mean value 0 and variance 1 (see Theorem 4.14).

82



e If k has two dominant components C;, C};, then we have the following three subcases:

1. If B; # B;, then Y, /n converges in law to a r.v. uniformly distributed in the interval
[b1,b2], where by = min{3;, 3;} and b = max{f;,5;} (see Theorem 5.12).

2. If B; = B; = B but v; # v;, then the limit distribution of Y"%nﬁ" is a mixture of normal

distributions of mean value 0 and variance uniformly distributed in the interval [¢q, 2],

where ¢; = min{y;,v;} and ¢ = max{v;,7;} (see Theorem 5.13). In other words,
Y.—f8n

T converges in law to a random variable with density function

1 c2 e—wz/(2v)

dv .
C2—C1 Jgy V27

flz) =

3. If 8 = B; = B and ; = ; = 7, then the distribution of Y";\/Tﬁ" again converges to a
Gaussian distribution of mean value 0 and variance 1 (see Theorem 5.14).

Notice that in Chapter 5 we considered non-simple models, too. For instance, in the sum model
with two equipotent components one has two main chains of length 1 and one obtains different
results according to the values of mean and variance constants.

6.2 The role of main chains

Now we study the properties of main chains and in particular we show that the behaviour of the
sequence {r,(z)} as z tends to 0 is mainly determined by the contribution of main chains.

To this aim, let us examine the terms in the decomposition (6.2) of the generating function
¢T R(z,w)n. First we consider the case i = j; by relation (6.3), we have

_ Ad_](I — U)(Ajez + BJ))
~ Det(I — w(Aje* + B;))

Rjj(z,w) = (I — w(Aze* + B;))™

and hence, as z tends to 0, the singularities of each entry approach the inverses of eigenvalues of
M;. We can distinguish three cases according to the properties of Mj:

i) M; is primitive and dominant. Then A is its (unique) eigenvalue of largest modulus. The
equation Det(yl —(A;je*+ B;)) = 0 implicitly defines a function y = y;(2) in a neighbourhood
of z = 0 such that y;(0) = X. Such a function is analytic at the point z = 0 and admits an
expansion

Vi + B
yi(z) = A (1 + Bz + %z +0(2%) (6.4)
where §; and +; are the mean and variance constants of A;. This implies, for z near 0 and

some 0 < p < A, that
__Ri(z) 1
Rteon) = 0o 0 ()

where R;(#) is a matrix of functions analytic and non-null at z = 0.

ii) M; is dominant (but not necessarily primitive). Then we can consider the family F; of the
eigenvalues of M; of largest modulus. We know that A € Ej; moreover, by the Perron—
Frobenius Theorem for irreducible matrices, every o € Ej; is a simple root of the characteristic
polynomial of Aje* + B;; hence the equation Det(yl — (A;e* + B;)) = 0 implicitly defines a
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function y = y4(2) in a neighbourhood of z = 0 such that y,(0) = a. Also y.(2) is analytic
at z = 0 where it admits an expansion

Ya(2) = a (1 4+ maz + s42° + 0(2%)) (6.5)
with m, € Ry and Rs, > 2m? Again this implies, for z near 0 and some 0 < p < A, the
equation

R, (2) 1
i = ———+0 6.6
R] (Z,’LU) ; l—ya(z)w+ 1_pw ( )
a€EE;

where R, (z) are matrices of functions analytic and non-null at z = 0.

iii) M; is not dominant. Then all its eigenvalues are smaller than A in modulus and, reasoning as
above, as z is near to 0 all singularities of R;;(z,w) are in modulus greater than A~'. This
implies, for some 0 < p < A and all z near 0

Rjj(z,w) =0 (1 _lpw) : (6.7)

Now, let us examine the behaviour of R;;(z,w) for i # j. Recalling (6.3), we consider an
arbitrary chain k = (Cy,Ci,,...,C;,) with £ > 2 and we denote R,(z,w) the corresponding
matrix given by

R (za w) = Ri1i1 (Za w)Mi1i2 (Z)Ri2i2 (Z, w) T Miz—ﬂ'e (Z)Riziz (Za w) : wlil' (6'8)

We also define the sequence {rgf) (2)} by
& Rz 0y, =) ri (2)wn. (6.9)
n=0

Then, next proposition can be proved by replacing the expansions (6.6) and (6.7) into (6.8).

Proposition 6.1 The following statements hold for every chain k and every ¢ € C, as n tends to
+o00:
1. If the order of k is 0, then 7,(")(c/n) = O(t™) for some 0 < T < \.
2. If the order of k is k > 1, then r,(®) (c/n) = O\ n*=1). Further, if the dominant compo-
nents of k are all primitive and nondegenerate, then r,(*)(c/n) = O(A* nk=1) |

Proof. Let k be a chain of order k > 1. Without loss of generality, we can assume that x =
(C1,Cs,...,Cy). Then we have

Ry (z,w) = Ry1(z,w)My2(2) Rz (2, w) - - - My_14(2) Ry (2, w) - w* ! (6.10)

and it is clear that the singularities of £f Ry (2, w)n, are those of the matrices R;;(z,w) for j =
1,2,...,€. Set J = {j : Cj is dominant }, note that #J = k and observe that, as z goes to 0,
R;;(z,w) can be expressed in the form (6.6) for each j € J, while if j € J¢ relation (6.7) holds.

First consider the case where  has order 0. Then J = () and, as z goes to 0, we have R;;(z,w) =
O((1 — pw)*) for some 0 < p < X. Therefore there exists a constant p < 7 < X such that

rid(e/n) = O(n'~'p") = O(")

holds. This conclude the proof of point 1.
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Now suppose that x has order k¥ > 1. Replacing the expansions (6.6) and (6.7) in (6.10) one
verifies that £ Ry (2, w)n, can be expressed as sum of terms of the form

H(z)-w*?!
1
Hj:l (1 —¢€j(z)w)
where H(z) is a complex functions, analytic and nonnull at z = 0, and each €;(z) is an eigenvalue
of (Aje* + B;). For any z near 0 each of these terms can be split as sum of two fractions obtained

by isolating the main singularities. Setting I = {j € J : lim, 0 |¢;(2)| = A}, the previous fraction
can be written as

(6.11)

Hy(z,w) + Hy(z,w)
[Lier—ei(xw)  [lier-(1 —€(z)w)

where Hj(z,w) is a polynomial in w of degree #I — 1 whose coefficients are functions in z analytic
at z =0, and Ha(z,w) is defined similarly. We can ignore the second fraction because (for z near

(6.12)

0) its singularities are in modulus strictly greater than A~! and hence its contribution to ri) (e/n)
is of the order O(7™), for some 0 < 7 < A. On the contrary, in a neighbourhood of z = 0, the first
fraction can be written in the form

Hi(z,w)
Hje](l — Ya; (z)w)

where each a; belongs to the set E; of eigenvalues of maximum modulus of M;. The sequence
associated with each of these fractions is related to the convolution of the sequences {yq,(2)"}, for
j € I. More precisely, the n-th element of such a sequence is a linear combination of the elements
of index n — i of that convolution, for 0 < i < #I. For z = ¢/n, using the expansion in (6.5), the
modulus of each of these terms can be bounded by

(6.13)

ol Y ey <o 3 dagl" - p+G/n =0 (Am* 1) (614)

Yiernj=n—i Jje€l Yjernj=n—i

for some positive constants C; and C3. Thus, since I C J, we have #I < k and hence equation
(6.14) proves that ry) (¢/n) = O(A" n¥=1) for every ¢ € C, as n goes to infinity.

Now, assume that all dominant components of k are primitive and non-degenerate. Then
E; = {\} forall j € J and in & R, (2, w)n, there is only one term of the form (6.13) such that
I =J. Call U(z,w) such a term. Note that, by equation (6.14), all the other terms (I # J being
true) give a contribution of the order O(A™ n*~2). Replacing the expansion (6.4) in U(z,w) and
reasoning as in (6.14), we get ,(*)(c/n) = O(A" n*F~1) for every c € C, as n goes to infinity. O

Since by equation (6.2) we have r,(z) = >, r ri) (z), we obtain the following result, which
shows the key role of the main chains.

Theorem 6.2 If all dominant components of the main chains are primitive and non-degenerate,
then for every constant ¢ € C we have

rale/n) = Y riP(e/n) (1+ O(1/n)) = OA"n*~")

KED

where k is the order of the main chains.

We conclude this section observing that Theorem 6.2 does not hold if the main chains admit
non-primitive dominant components.
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6.3 Limit distribution in simple models

In this section we determine the limit distribution of Y, in the simple models that satisfy the
following additional property: the dominant components of the main chain have (pairwise) distinct
mean constants. Such analysis will be extended in Section 6.4 to all simple models (with partially
or totally coincident mean constants of dominant components) and also to all models whose main
chains have primitive, non-degenerate dominant components.

Under our hypotheses, the limit distribution turns out to be related to a special family of
distribution functions we call polynomial since their density is defined by polynomials over adjacent
intervals. Formally, consider an array b = (b1, be, ..., bx) of k > 2 real numbers such that 0 < b; <
by <---<bp<1andlet f : R — R be the function defined by

0 fx<b
frz)=< (k-1 E‘I;:r cj(bj — z)k2 ifb,_1 <z <b,forsomel<r<k (6.15)
0 if x > by,

where ¢; = [];;(b; — b;)~! for every j = 1,2,--- ,k. Note that if k = 2, then f; is the uniform
density function over the interval (by,b2). In Section 6.3.2 below we show that, for every k& > 3, fp
is a density function, i.e. fy(z) > 0 for every x € R, and fj;o fo(x)dz = 1; moreover, we determine
its characteristic function and show that f; is unimodal. In the following we say that a r.v. X is
a polynomial r.v. of parameters by, b, ..., b if fy(z) is its density function.

Theorem 6.3 Let Y,, count the number of a in a simple model with main chain k having order
k. Moreover, let B1,. .., Bk be the mean constants of dominant components in k in non-decreasing
order. If k > 2 and all B;’s are distinct, then Y,/n converges in law to a polynomial r.v. of
parameters 1, ..., Bk-

The proof of Theorem 6.3 is presented in the following subsections; it is based on the properties
of convolutions of sequences of powers of complex numbers.

6.3.1 Multiple convolutions

Given an array a = (a1,as,...,a) of k> 2 nonnull complex numbers, consider the function
k—1
w
Go(w) = ———— .
[[io (1 = asw)
This is the generating function of the convolution of the sequences {a{'},, {a%}n, .., {a}}, shifted

of k — 1 indices. More precisely, at the point w = 0 such a function admits the power series
expansion G,(w) = Z:i% ga(n)w™ such that

0 if 0<n<k—2
ga(n) = Za?a? . --ai’“ if n>k—-1 (6.16)
where we mean that the sum (*) is extended over all k-tuples (iy,...,i;) € N¥ such that iy +---+

iy =n —k+ 1. When all a;’s are distinct, the following proposition allows us to express the terms
of the sequence {g,(n)}n>0 in a useful form.
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Proposition 6.4 Let a = (a1,as,--.,ax) be an array of k > 2 distinct nonnull complex numbers
and let the sequence {g,(n)}n be defined by (6.16). Then, for every n € N, we have

k
ga(n) = Z cj aj (6.17)

where cj =[], (a; — a;)~ ! for every j =1,2,--- k.

Proof. First observe that the generating function G,(w) of {g.(n)}, can be decomposed in partial
fractions. Hence there exist k complex coefficients ¢y, ca, ..., ¢ such that

k—1

w c;

k .
Hf:1(1 —aw) = 1-aw ‘

G.(w) =

Now, multiplying the last term in the previous equation by (1 — a;w), we obtain

k—1
w o ¢i(l — ajw)
[Tz (1 = aiw) _CJ+Z 1—a;w

which leads to ¢; = [[;;(a; — a;)~" when evaluated in w = 1/a;. This completes the proof. O

Corollary 6.5 Let a = (a1,az,...,a5) be an array of k > 2 distinct nonnull complex numbers
and set ¢; = [[;4;(a; — a;)~! for every j = 1,2,--- k. Then for each 0 < s < k — 2 the

polynomial Z?Zl ¢j(a; —x)® is identically null and in particular Ele cjai = 0. Moreover we have
k k—1
=i ciay =1

Proof. By equations (6.16) and (6.17) we derive }_; cjaffl =ga(k—1) =1and 3, cjaj = ga(s) =0
for every 0 < s < k — 2. Thus, by the binomial formula, also the polynomial }_; ¢;j(a; — z)* is
identically null. |

6.3.2 Polynomial distributions

Let fp be defined as in equation (6.15), where b is a k-tuple of real numbers (by,ba,...,bg) such
that 0 < by < by <--- <bg <1andk > 3. Here we prove that f; is a unimodal density function
and we determine its characteristic function. These results are consequences of the key property
stated in Corollary 6.5, in particular the next proposition is easily proved from equation (6.15).

Proposition 6.6 If k > 3, then fy is continuously differentiable all over R up to the order k — 3.
Moreover the (k — 2)-th derivative of fy is well defined in R\{b1,...,br} and is constant in each
of the intervals (b;,bix1),1=1,--- ,k — 1.

Lemma 6.7 Let f : R — R be a function admitting j-th derivative all over R for some j > 1.
Also assume that, for some reals a < b, f has m zeros in (a,b) and f(x) = 0 for each x < a or
x >b. Then, for every i =1,...,7, the i-th derivative of f admits at least m + i zeros in (a,b).

Proof. We reason by induction on ¢ = 1,...,5. If i = 1, then consider the m + 1 intervals
determined by the zeros of f in [a,b]. For each of them, say (z1,22), Rolle’s Theorem guarantees
that f'(xz) = 0 for at least one = € (1, z2)-

Now assume 1 < i < j and consider the i-th derivative of f, that is h = f(!. By the properties
of f, we have h(a) = h(b) = 0 and by the inductive hypothesis h admits m + i zeros in (a,b).
Therefore, by applying the previous argument to h, one proves that A’ = f(+1) admits m + i + 1
zeros in (a, b). |
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Proposition 6.8 For every k > 3, the function f, admits a unique mazimum all over R.

Proof. If k = 3 the property follows by a direct inspection of the function, which is linear and
nonnull in the intervals (by,bs) and (ba,bs). If k > 4, let us consider the (k — 3)-th derivative
%573 (2) of fo(x). Tt is immediate to see that f,*~%)(z) is linear with respect to z in each of
the k — 1 intervals (b;,b;+1), ¢ = 1,...k — 1. Moreover, by Corollary 6.5, it does not vanish in
(by,b2) U (bg—1,bg). Thus, fo'* =) has at most k — 3 many zeros in (by, by)-

Now, assume by ab adsurdum that f, is not unimodal. Then its derivative f, vanishes in at
least 3 points in the interval (bi,bx) and hence f; satisfies the hypotheses of Lemma 6.7 with
it = k—4 and m = 3. As a consequence, fb(k_3) admits at least k — 1 zeros in (by,bg), which
contradicts the previous property.

Fig.6.1 and Fig.6.2 show the plots of the functions f, having parameters b = (0.1,0.3,0.4,0.8)
and b = (0.008,0.95,0.96,0.97,0.98,0.99), respectively. In each figure the first picture represents
the entire curve, while the others show the details of the function in some subintervals. The vertical
bars indicate the values of b;’s. Note that if ¥ = 4 the maximum necessarily lays in the intermediate
interval (b2, b3). On the contrary, if £ > 4 the maximum can lay in any interval between by and
br—1. For instance in Fig. 6.2, because of the asymmetric position of the points b;’s, it lays in the
second interval (b2, bs).
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Figure 6.1: Plot of the function f,(z), where b1 = 0.1, b = 0.3, b3 = 0.4, by = 0.8. The vertical bars

indicate the values of b;’s.
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Figure 6.2: Plot of the function f,(z), where by = 0.008, b = 0.95, b3 = 0.96, bs = 0.97, b5 = 0.98,
be = 0.99. The vertical bars indicate the values of b;’s.

From Proposition 6.8 it is clear that fy(xz) > 0 for all x € R. To prove that f; is a density
function we still have to show that its integral over R equals 1. This is a consequence of Proposition
6.9 below where we determine the characteristic function of f;, defined by

zb_,

By (1) k 1'2k: (6.18)
b B* j=1 z#J(b —bi) ‘

Proposition 6.9 For every b = (by,bs,...,br) € R* such that 0 < by < by < --- < by < 1 and
k> 2, fy(x) is a density function and Py(t) is its characteristic function.

Proof. By using Corollary 6.5 one can show, by a direct computation, that lim;,o ®(¢) = 1.
Therefore, it suffices to show that fj:; fo(z)etrdx = ®4(t) for every t € R. We prove this equality
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by using Corollary 6.5 again. Set I(t) = [ fy(x)e"*dz and ¢; = [T (b5 — b;)~! for every
j=1,...,k. Observe that

= (k—1) ZZCJ/ b2t g,
r=2 j=r
Integrating by parts one can verify that for ¢ # 0 the function e*?(c—z)P admits the antiderivative

ettt I pl(c — x)P~*
- T -
it = (p—s)! (it)®

Hence we can write I(t) = Zfzz Zf:r ¢j(A,j — Ar_1,;) where

k=D i,
(it)Ft '

and in particular A, , =

A, ; = eithr kif (k(_ D! (bj — b, )k—2s

— (K 2 — g)! (it)s+!

Now set BT:E?:TCJ'A r,j and Cp = Z . CjAr_1,;. Foreach 2 <r < k—1 we have B, — Cyy1 =

¢r Ay and moreover By, = cp Ay . Finally, by Corollary 6.5 we have Cy = Ele cjAij—c1Aiq =
—c1Ay,1. As a consequence the integral can be computed as follows

k k k
10 = 3B - C) = S iy = Gl S ese = a0
r=2 j=1

j=1

and this concludes the proof. a

6.3.3 Polynomial limit theorem

We are now able to prove Theorem 6.3. By Proposition 6.9 it is sufficient to show that the
characteristic function of Y;,/n converges to ®3(t) for every t € R, where § is the k-tuple of the
mean constants §; in increasing order. Observe that, by equation (4.6), the characteristic function
of Y, /n is given by

. ) rn(it/n)
v t) = Oy, (it/n) = ———1—=;
Yn/n(Z ) Yn (Z /TL) ’f'n(O) 3
thus, let us first prove the following lemma.
Lemma 6.10 Consider a simple model with main chain k of order k and let 81,02, ..., 0Bk be the

mean constants of its dominant components. Then, for every t € R, as n grows to +0o we have

( ) ZS ( )A” iD; ( )-(1+0(1/n)) (6.19)
where, for each j, S;j(2) is an analytic function at z = 0 and D;(2) is defined by

Di(z)= > (42" (1 +B2)" - (1+ Br2)™

ni+..+ng=n—j
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Proof. By Theorem 6.2 we have r,(it/n) = i) (#t/n)(1 + O(1/n)) and hence we have to show
that re® (it/n) equals the right hand side of (6.19). Without loss of generality we may assume k =
(C1,Cs,...,C¢) where C1,Cs, ..., Cy are its dominant components. Moreover, by our hypotheses,
M; is primitive and non-degenerate for all j = 1,2,--- k. Then, reasoning as in the proof of
Proposition 6.1, for any z near 0 the leading term of the generating function & R, (z,w) 7, is given
by an expression

(6.20)

- Si(z) - w'
U(z,w) = zz:: H;?ZI(I —yj(z)w)

0
where the functions y;(z)’s are defined as in (6.4) and the functions S;(z)’s are analytic at z = 0.
Now, let u,(z) and h,(z) be defined by

400 k +oo
w) = Z un(z)w™ and H (1- yj(z)w)f1 = Z hn(2)w™ |
n=0 j=1 n=0
respectively. Then, by equation (6.20), for every n > k we have
k—1
un(2) = ) Sj(2)hnj(2) -
j=0

Since hn(2) = 22, 4 nuen ¥1(2) " y2(2)"* - - - yx (2)™*, replacing (6.4) in the previous equation and

taking z = it/n a simple computation proves that u,(it/n) equals the right hand side of (6.19).
The result now follows by observing that, by Proposition 6.1, the other additive terms of

&1 R, (z,w) ny, for z = it/n, yield a sequence of the order O(A"n*=2). ]

Proposition 6.11 Assume the hypotheses of Theorem 6.3 and let B be the k-tuple of the mean
constants (3; in increasing order. Then, for every t € R, Wy, ,,(it) tends to ®g(t) as n grows to
+0o0.

Proof. In our hypotheses Lemma 6.10 holds. For ¢ = 0 this implies D;(0) = n*"1/(k —1)!- (1 +
0O(1/n)) and hence
-1

(0) = Zs 0)A™ 7 . (1+0(1/n)) .

Moreover, for t # 0, since the 3;’s are distinct we have D;(it/n) = g.(n+k— j—1), where a is the
array of the complex values 1 + itf¢/n, £ = 1,...,k. Then, by Proposition 6.4, for every nonnull
t € R we get

i (1 + itBy Jn)n—i+h—1

D;(it/n) = pa [Tz (itBe/n — itBi/n)

and hence from (6.19) we obtain

k—1 An— ]nk 1 k (1+Z.t61g/n)n_j+k_1
( ) Z ( ) (it)F1 e:z1 TR -(14+0(1/n)) .

7=0

Now, as n tends to oo, it is easy to see that

15] _
qué] 'BJ ) B

. k
. olit) = 20— TS
j=1
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6.4 Further developments

The analysis presented in the previous section can be extended to all simple models, also when the
mean constants 3;’s (associated with the dominant components of the main chain) are partially
or totally coincident. The limit distributions of our statistics in this more general case generalize
in a natural way the behaviour known for the bicomponent models studied in Section 5. These
distributions are defined extending the notion of polynomial density function given in (6.15) by
allowing multiplicities in the associated array b. Here we simply state our results avoiding the
long proofs; these can be developed along the same line of Section 6.3 and are based on a study of
convolutions with multiplicities analogous to the discussion presented in Section 6.3.1.

To state these results precisely we only have to introduce the main characteristic function
occurring in this general approach, which is defined as follows. Let b = (b1, bs, ..., b,.) be an array
of r > 2 distinct real numbers lying in the interval (0,1) and let m = (mq,ma,...,m,) € N be a
tuple of multiplicities, where m; > 1 for each j and m; + ... + m, = k. Then define the function

r.om ith;
(I)b,m(t) =(k-1)! Zl ZICJ',S : (Zt)k*esw (6.21)

where the c; ;s are constants given by

_ mj—s mg+hg—1 ;
¢js = (=1) > H( 1 ) R (6.22)

El#j hg=m;—s {#£]

One can prove that this is a characteristic function and the corresponding density function can be
obtained from (6.15) by a continuity argument. The main difference is that the new density may
be non-continuous at the points = b; such that m; > 1, j =1,...,k.

Now, let Y,, count the occurrences of a in a simple model having main chain & of order k.
Let B1,...,8k and 71,...,7 be, respectively, the mean and variance constants of the dominant
components in k. We also denote by 3 and «y the arrays of distinct 3;’s and «;’s in increasing order
and by u and v the arrays of the corresponding multiplicities. Clearly, if 3i,..., 8 are pairwise
distinct, then Theorem 6.3 holds. Otherwise we have the following cases:

1. If Bq,..., Bk are partially but not totally coincident (i.e. B; = B; and s # f; for some
indices i, , s,t, i # j), then Y,, /n converges in distribution to a r.v. of characteristic function

2. If B; = By for all j = 2,...,k and all v;’s are pairwise distinct, then Y"%gl" converges in
distribution to a r.v. of characteristic function ®.(—t%/(2i));

3. IfB; =pyforall j =2,...,k and vq,...,7 are partially but not totally coincident, then

Y"fozl" converges in distribution to a r.v. of characteristic function ®., ,(—t?/(2i));

4. If Bj =B1andyj =y forall j =2,...,k, then % converges in distribution to a normal

r.v. of mean 0 and variance 1.

The previous results can be further extended by a standard conditioning argument (already
used in chapter 5 for the degenerate cases) to all rational models (&, 1, ) such that for every k € T,
all dominant components in & are primitive and non-degenerate. In this case, by equations (6.8)
and (6.9), for every k € T';,, one can easily see that

T%n)(z) — Sn(z))\nnk—l + O()\"nk_z)
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where k is the degree of k and s,(z) is a non-null analytic function at z = 0. Then, by Theorem
6.2, we have
rn(0) = SA™nF~1 £ O(A"nk—2)

where S =37 . s.(0). We can also associate each € I'y, with the probability value p,, given
by pr = 8.(0)/S. Note that the values {py}xer,, define a discrete probability measure and they
can be explicitly computed from (&, i, n).

Moreover, each k € T',;, defines a simple rational model in its own right, with an associated

sequence of r.v.’s {Yn(”)} having its own limit distribution according to Theorem 6.3 and points 1-4
above. In particular, YTE“) /n always converges in distribution to a random variable of distribution
function F;(x) defined according to the previous results. Note that if all constants ;’s are here
equal, then F,(z) reduces to the degenerate distribution of mass point ;. Now it is not difficult
to see that the overall statistics Y, /n converges in distribution to a r.v. of distribution function

F(z) defined by F(z) = ), . Fu(z)ps.
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Conclusions

In this thesis we considered the frequency problem that studies, from a probabilistic point of view,
the number of occurrences of a pattern into a text randomly generated by a stochastic source.
In particular, we used rational formal series (or, equivalently, weighted automata) in two non-
commuting variables a and b to define a new kind of probabilistic model we called rational. We
then took in exam the rational symbol frequency problem; intuitively this concerns the study of
the sequence of random variables {Y,,}, representing the number of occurrences of the symbol a
in words of length n chosen at random in {a, b}*, according to the probability distribution given
by the rational model.

We showed how our model can be viewed as a proper extension of the Markovian model usually
considered in the literature. Indeed, we prove that the question of studying the number of occur-
rences of a regular pattern in a text generated by a Markovian source can always be translated
into the rational symbol frequency problem for a suitable rational series over two non-commuting
variables, while the converse does not hold in general.

We first assumed that the transition matrix associated with the series defining the model was
primitive. We showed that in this case the mean and the variance of Y,, are asymptotically linear
and we provided precise expressions for the constants appearing in their asymptotic formulas.
We also showed that a central limit theorem holds and we provided a condition that guarantees
the existence of a Gaussian local limit theorem; to state this condition, we introduced a notion of
symbol periodicity for weighted automata which extends the classical periodicity theory of Perron—
Frobenius for non-negative matrices. As an application of the previous analysis, we obtained an
asymptotic estimation of the growth of the coefficients for a subclass of rational formal series in
two commuting variables.

We then extended the results, dropping the primitive hypothesis usually assumed in the liter-
ature. First, we studied bicomponent models, defined by weighted automaton with two strongly
connected components, obtaining in many cases limit distributions quite different from the Gaus-
sian one. We also presented a general approach to deal with arbitrary non-primitive models. Again,
we started from the decomposition of the weighted automaton defining the model into strongly
connected components, in order to detect the elements that mainly determine the limit distribu-
tion. In the most relevant cases we established the limit distribution, that is characterized by a
unimodal density function defined by polynomials over adjacent intervals.

Among the possible developments of this thesis, let us mention the question of generalizing
the analysis and the techniques used here to the multivariate case, where different patterns (or
simply letters) are considered. In particular, for instance, one could fix an integer k; for each
pattern P; and study the problem of counting the random texts having exactly k; occurrences
of the pattern P;, for every index i. Other open questions are related to the inverse problem:
given some experimental results on the occurrences of a letter into a random text, it would be
interesting to derive structural properties of the model that generated the text, like its primitivity,
its periodicity or the number of its irreducible components.
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