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Picture languages are a generalization of string languages to two dimensions: a picture is a two-
dimensional array of elements from a finite alphabet. Several classes of picture languages have been
considered in the literature [5,7,3,10]. In particular, here we refer to class REC introduced in [5] with
the aim to generalize to 2D the class of regular string languages. REC is a robust class that has various
characterizations; in particular, it is the class of picture languages that can be generated by tiling
systems, a model introduced in [4], or equivalently by Wang systems [?].

A central notion in string regular language theory is determinism, whereas the concept of deter-
minism for picture languages is far from being well understood. Tiling systems are implicitly nonde-
terministic: REC is not closed under complement, and the membership problem is NP-complete [8].
Clearly, this latter fact severely hinders the potential applicability of the notation. The identification
of a reasonably “rich” deterministic subset of REC would spur its application, since it would allow
linear parsing w.r.t. the number of pixels of the input picture.

In past and more recent years, several different deterministic subclasses of REC have been stud-
ied, e.g. the classes defined by deterministic 4-way automata [7] or deterministic online tessellation
acceptors [6]. This latter model inspired the notion of determinism of [1], that relies on four diagonal-
based scanning strategies, each starting from one of the four corners of the picture. Here will call the
corresponding deterministic class Diag-DREC1.

In [9] we introduced the class Snake-DREC, based on a different kind of determinism for tiles,
using a boustrophedonic scanning strategy. Snake-DREC properly extends Diag-DREC and is closed
under complement, rotation and symmetries. However, like Diag-DREC, it is not closed under inter-
section and union. When pictures of only one row (or column) are considered, this model reduces to
deterministic finite state automata. Quite surprisingly, such notion of determinism coincides with line
unambiguity of Row-UREC (or Col-UREC) introduced in [1] to have backtracking at most linear in
one dimension of the input picture.

The notion of determinism for tiling systems is quite different than the same notion for 4-way
automata [7,5]. For instance, both Snake-DREC and Diag-DREC are incomparable to the class of
languages recognized by 4-way deterministic automata. Moreover, any notion of determinism in tiling
systems (and online tessellation acceptors) seems to require some pre-established strategy used for
scanning the picture.

Indeed, both Diag-DREC and Snake-DREC are based on some fixed kind of strategy. In [2], a first
generalization of the concept of scanning strategy is presented; with the same goal, here we propose
an alternative framework, where a scanning strategy is defined as a method to sort all cells of a picture,
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in such a way that the next cell to visit is always adjacent to the previous one, and depends only on this
information: which neighboring cells have already been visited, and which direction we are moving
from. Examples of such scanning strategies are those following the boustrophedonic order, spirals,
and many others.

We then introduce a new model of automaton based on tiles. We call such model Wang automaton,
since its description is based on the notation of Wang systems.

Wang automata combine features of both online tessellation acceptors and 4-ways automata: as
in online tessellation acceptors, computation assigns states to each picture position; as in 4-way au-
tomata, the input head visits the picture moving from one cell to an adjacent one, according to some
scanning strategy. Differently from 4-way automata, Wang automata visit each position exactly once;
moreover, one can define various scanning strategies, but next position cannot depend on the input
symbol. However, we prove that Wang automata are equivalent to tiling systems, thus they are strictly
more powerful than 4-way automata [5].

For Wang automata, it is very natural to introduce determinism. The resulting class properly ex-
tends Snake-DREC (and hence Diag-DREC) and is closed under complement, but not intersection
and union.

In the rest of this abstract we introduce some notations needed to formally define Wang automata,
and we state some basic properties of this model.

Let Σ be a finite alphabet. A two-dimensional array of elements of Σ is a picture over Σ. The set
of all pictures over Σ is Σ++. A picture language is a subset of Σ++.

Given two positive integer n and m, the picture domain of size (n,m) is the set P = [1..n] × [1..m]
and represents a rectangular region with n rows and m columns. Such a region contains cells, i.e.
unitary squares, and each cell is bordered by 4 edges; notice that two adjacent cells share a common
edge.

Given a cell c, we use border(c) to denote the set of 4 edges adjacent to c. Dir is the set of
directions {r, l, t, b}. For every cell c and d ∈ Dir, the edge of c in direction d is denoted by c|d, and
the cell adjacent to c in direction d is denoted by c � d.

We call context any pair in the set {(d,D) : d ∈ D ⊂ Dir}. A context will represent the current
direction of the input head of the automaton, together with the information about which neighboring
cells have already been visited. The set of contexts is denoted by C. A next-cell function is a partial
function η : C → Dir such that η(d,D) < D for every d ∈ D ⊂ Dir.

Let η be a next-cell function, c0 a cell, and d0 ∈ Dir a direction. Then, for every picture domain P,
the triple 〈η, c0, d0〉 induces a path in P starting from c0 in direction d0, i.e. the sequence

path(P) = c0, c1, c2 . . . (1)

of cells of P satisfying the following inductive definition. Let B0 be the set of borders (i.e. the set of
outer edges) of P and

Di = {d ∈ Dir : ci|d ∈ Bi} Bi+1 = Bi ∪ border(ci)

di+1 = η(di,Di) ci+1 = ci � di+1

In general, the cells appearing in (1) may repeat; moreover the sequence may be infinite. If path(P)
is a permutation of P for every picture domain P, then we say that 〈η, c0, d0〉 is a picture scanning
strategy. Examples of scanning strategies are those following the boustrophedonic order, spirals, etc.



In [?] a variant of Wang tiles equivalent to tiling systems was introduced. A Wang tile is a square
tile with colored sides. Color represents compatibility: two tiles may be adjacent only if the color of
the touching sides is the same. A labeled Wang tile is a Wang tile bearing a label in its center; a set
of such tiles is called Wang system. A rectangular array of labeled Wang tiles generates the picture
obtained by taking only the labels of the tiles.

We are now able to formally introduce Wang automata. Let Γ be a set of colors. If the edges
adjacent to a cell are (partially or fully) colored, a coloring will be used to summarize their colors.
Formally, we call coloring any partial function γ : Dir → Γ. The set of directions where γ is defined
is denoted by ∆γ. If ∆γ = Dir, then γ is called a full coloring. The set of colorings is denoted by
Colrs. Given γ1, γ2 ∈ Colrs, we say that γ2 extends γ1 if γ2(d) = γ1(d) for every d ∈ ∆γ1 . Any pair
(d, γ) ∈ Dir × Colrs such that d ∈ ∆γ ⊂ Dir is called a colored context; the set of colored contexts is
denoted by CC.

A Wang automaton consists of a tuple 〈Σ, Γ, η, c0, d0, δ, F〉, where:

– Σ is a finite input alphabet,
– Γ is a finite set of colors,
– 〈η, c0, d0〉 is a scanning strategy,
– F is a set of full colorings over Γ,
– δ : Σ ×CC → 2CC is a function such that

(d′, γ′) ∈ δ(σ, d, γ) ⇒ d′ = η(d, ∆γ) and γ′ is a full coloring that extends γ.

If δ(σ, d, γ) is a singleton for every (σ, d, γ) ∈ Σ ×CC, then the automaton is said to be deterministic.

A Wang automaton can be seen as having a head that visits a picture, by moving from a cell to an
adjacent one, and coloring at each step the edges of the cell it is visiting (in a sense, the element of
CC are the states of the automaton). The movements and coloring operation the automaton performs
are determined by a finite control formalized by function δ.

More precisely, the computation of a Wang automaton over an input picture p can be described as
follows. At the beginning the head of the automaton points at cell c0 and the current direction is set to
d0. At step i, let di the current direction, ci be the cell the head is pointing at, σi the symbol of p in cell
ci, and γi the coloring corresponding to the colors of borders of ci. Then, if (d′, γ′) ∈ δ(σi, di, γi), the
automaton may execute this move: apply γ to the borders of ci, move to the cell ci+1 = ci � d′, and set
the current direction to d′. If no move is possible, the automaton halts. The input picture is accepted
if the colors of the border of the final cell correspond to a coloring in F.

Notice that the sequence c0, c1, . . . , cm of cells visited by the automaton during the computation
does not depend on the input symbols and is exactly the path that the scanning strategy 〈η, c0, d0〉

associates with the domain of the input picture p.

Theorem 1. The class of all picture languages recognized by Wang automata is REC.

Proposition 1. The class of all picture languages recognized by deterministic Wang automata in-
cludes Snake-DREC and hence Diag-DREC. Such class is closed under complement but not under
union nor intersection.

Proposition 2. Any fixed strategy defines a sub-class of deterministic Wang automata; the corre-
sponding class of picture languages is a boolean sub-class of REC. In particular, the spiral scanning
strategy determines a boolean class that is also closed under rotation and contains picture languages
that are not in Snake-DREC.



References

1. M. Anselmo, D. Giammarresi, and M. Madonia. From determinism to non-determinism in recognizable
two-dimensional languages. In Proc. DLT 2007, volume 4588 of Lecture Notes in Computer Science, pages
36–47. Springer, 2007.

2. M. Anselmo, D. Giammarresi, and M. Madonia. Tiling automaton: A computational model for recognizable
two-dimensional languages. In Proc. CIAA 2007, volume 4783 of Lecture Notes in Computer Science, pages
290–302. Springer, 2007.

3. A. Cherubini, S. Crespi Reghizzi, and M. Pradella. Regional languages and tiling: A unifying approach
to picture grammars. In Proc. MFCS 2008, volume 5162 of Lecture Notes in Computer Science, pages
253–264. Springer, 2008.

4. D. Giammarresi and A. Restivo. Recognizable picture languages. International Journal Pattern Recognition
and Artificial Intelligence, 6(2-3):241–256, 1992. Special Issue on Parallel Image Processing.

5. D. Giammarresi and A. Restivo. Two-dimensional languages. In A. Salomaa and G. Rozenberg, editors,
Handbook of Formal Languages, volume 3, Beyond Words, pages 215–267. Springer-Verlag, Berlin, 1997.

6. K. Inoue and A. Nakamura. Some properties of two-dimensional on-line tessellation acceptors. Information
Sciences, 13:95–121, 1977.

7. K. Inoue and I. Takanami. A survey of two-dimensional automata theory. Information Sciences, 55(1-3):99–
121, 1991.

8. K. Lindgren, C. Moore, and M. Nordahl. Complexity of two-dimensional patterns. Journal of Statistical
Physics, 91(5-6):909–951, June 1998.

9. V. Lonati and M. Pradella. Snake-deterministic tiling systems. In Proc. MFCS 2009, volume 5734, pages
549–560, 2009.

10. O. Matz. On piecewise testable, starfree, and recognizable picture languages. In M. Nivat, editor, Proc.
FoSSaCS 1998, volume 1378 of Lecture Notes in Computer Science, pages 203–210. Springer, 1998.


