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Abstract

In this paper, we determine some limit distributions of pattern statistics in rational stochastic models. We present a general
approach to analyze these statistics in rational models having an arbitrary number of strongly connected components. We explicitly
establish the limit distributions in most significant cases; they are characterized by a family of unimodal density functions defined
by means of confluent Vandermonde matrices.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This work presents some results on the limit distribution of pattern statistics. The major problem in this context is to
estimate the frequency of pattern occurrences in a random text. This is a classical problem that has applications in several
research areas of computer science and biology: for instance, it is considered in connection with the search of motifs
in DNA sequences [17] while the earlier motivations are related to code synchronization [10,11] and approximated
pattern-matching [13,22]. In a general probabilistic framework [18,16,3], given one or more patterns, defined as strings
over a finite alphabet �, and a probabilistic source P generating words at random over �, one considers the number
Xn of occurrences of patterns in a word of length n generated by P . 1 Typical goals are the asymptotic evaluation of
the moments of Xn, in particular its mean value and variance, its limit distribution, the local limit properties and the
corresponding large deviations. The results depend in particular on the stochastic model P, which is usually assumed
to be a Bernoulli model [11] or a Markovian model [18,16]. For instance, in [16] Gaussian limit distributions are
obtained, for any regular set of patterns and any Markovian source P, under a primitivity hypothesis on the associated
stochastic matrix.

In our paper, we assume the so-called rational stochastic model, introduced in [2], which includes the traditional
Markovian model as a particular case. In our framework, the pattern is reduced to the single symbol a while the text
is a word of length n over the alphabet {a, b} generated at random according to a probability distribution defined by

� This work includes results presented in the paper “M. Goldwurm and V. Lonati, Pattern Occurrences in Multicomponent Models, Proceedings
of the 22nd S.T.A.C.S., Lecture Notes in Computer Science, Vol. n. 3404, 680–692, Springer 2005”. This research has been supported by Project
MIUR PRIN 2006-2007 “Automata and Formal Languages: Mathematical and Applicative Aspects”.
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1 Here, an occurrence is a position where a pattern ends in the text.
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means of a rational formal series with nonnegative real coefficients and noncommutative variables a, b. Such a setting
can simulate any Markovian source over an arbitrary finite alphabet � for any regular set of patterns in �∗ [2].

Also in the rational stochastic models, Gaussian limit distributions are obtained under a primitive hypothesis, i.e.
when the matrix associated with the rational formal series (counting the transitions between states) is primitive [2].
A complete study of the limit distributions is given in [5] in the bicomponent rational models, that is when the graph
corresponding to the previous matrix consists of two strongly connected components.

Here, we present a general approach to the analysis of rational stochastic models with an arbitrary number of
strongly connected components (called multicomponent models), explicitly establishing the limit distribution of the
corresponding pattern statistics in most significant cases. The main result shows that such a limit distribution is related
to the confluent Vandermonde matrices, a generalization of the classical Vandermonde matrices used in several research
areas and in particular in Automatic Control Theory [4,15].

The material we present is organized as follows. In Section 3 we recall the notion of confluentVandermonde matrix and
some of its properties; in particular, we show how this is related to the convolution of a finite set of sequences. In Section
4 we introduce a family of probability distributions defined by means of confluent Vandermonde matrices and establish
their main properties. We call them Vandermonde distributions. In particular, we prove that their density functions
are unimodal and we compute their characteristic functions. In Section 5 we start our analysis of pattern statistics
and present the rational stochastic models, discussing the natural decomposition in strongly connected components;
in particular, we introduce the notions of dominant component and main chain and show their role in the analysis of
multicomponent models. In Section 6 we present our main result, which concerns the simple models (those with just
one main chain which in addition only has primitive dominant components); in this case, assuming a mild variability
condition on the dominant components, we determine the limit distribution of our pattern statistics showing that it is
a Vandermonde distribution. Finally, in Section 7, we characterize the limit distributions for all simple models and
provide a natural method to determine the limit distribution in the general case.

2. Preliminary notions

Generating functions represent the main tool we use in this study (see for instance [6] or [20, Chapter 3]). We recall
that the (ordinary) generating function of a sequence {gn} ⊆ C is the analytic function g(w) that admits the Taylor
expansion g(w) = ∑+∞

0 gnw
n for every w in an open neighbourhood of 0. In our analysis we often have to evaluate

the asymptotic growth of sequences having a rational generating function. To this end we make use of the following
well-known properties that allow to extract informations on the growth of a sequence from the singularities of its
generating function.

Let g(w) be the generating function of a sequence {gn} ⊆ C; consider the radius of convergence R of the power
series

∑+∞
0 gnw

n and assume R is finite. We first observe that gn = O(r−n) for every real r such that 0 < r < R.
Moreover, let �1, �2 . . . , �j be the singularities of g(w) of modulus smaller than T, for some T > R. If all �i’s are

simple poles then gn = ∑j
i=1ci�

−n
i + O(�n) for some 0 < � < R−1 and some nonnull values ci ∈ C, i = 1, . . . , j .

On the contrary, if each �i is a pole of degree ki , then gn = ∑j
i=1ci�

−n
i nki−1(1 + O(1/n)) where ci ∈ C is nonnull for

every i = 1, . . . , j .
We finally recall that the product of two generating functions is the generating function of the convolution of the associ-

ated sequences. More generally, if g(i)(w) is the generating function of the sequence {g(i)
n } for each

i = 1, 2, . . . , k, then f (w) = ∏k
i=1g

(i)(w) is the generating function of the sequence {fn} such that, for every n ∈ N,

fn = ∑
n1+···+nk=n

g(1)
n1

g(2)
n2

· · · g(k)
nk

.

3. Confluent Vandermonde matrices

Vandermonde matrices are defined by linear systems of equations whose solution yields the coefficients of poly-
nomials of smallest degree with a given set of distinct roots [14]. When roots are associated with a given multi-
plicity an analogous system of equations can be defined that leads to a generalized version of Vandermonde matrix,
called confluent Vandermonde matrix. That one plays a remarkable role in Automatic Control Theory [4]; in par-
ticular, its inverse is useful to compute the solutions of linear systems of differential equations [15]. In this section



M. Goldwurm, V. Lonati / Theoretical Computer Science 356 (2006) 153 –169 155

we recall the main properties of such matrices; our main goal is to present Proposition 3, which shows how the inverse
of a confluent Vandermonde matrix can be used to compute the terms of the convolution of a family of sequences.

Given two integers k, r such that 2�r �k, let (v1, v2, . . . , vr ) be a tuple of distinct complex numbers and let
(m1, m2, . . . , mr) ∈ Nr be an associated tuple of multiplicities, such that m1 + m2 + · · · + mr = k and mi �1 for
each i = 1, 2, . . . , r . Consider the monic polynomial

D(x) =
r∏

�=1
(x − v�)

m� = xk + ak−1x
k−1 + · · · + a1x + a0. (1)

The confluent Vandermonde matrix associated with D(x) is defined by V = [V1|V2| · · · |Vr ] where, for each � =
1, 2, . . . , r , V� is the matrix of size (k × m�) such that

(V�)hj =

⎧⎪⎨
⎪⎩
(

h − 1
j − 1

)
v

h−j
� ifj �h

0 otherwise.

for every h = 1, 2, . . . , k and j = 1, 2, . . . , m�.
For instance if r = 2, m1 = 3 and m2 = 4, then V is given by

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0

v1 1 0 v2 1 0 0

v2
1 2v1 1 v2

2 2v2 1 0

v3
1 3v2

1 3v1 v3
2 3v2

2 3v2 1

v4
1 4v3

1 6v2
1 v4

2 4v3
2 6v2

2 4v2

v5
1 5v4

1 10v3
1 v5

2 5v4
2 10v3

2 10v2
2

v6
1 6v5

1 15v4
1 v6

2 6v5
2 15v4

2 20v3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the special case when m� = 1 for every � = 1, 2, . . . r , V reduces to the standard Vandermonde matrix

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

v1 v2 . . . vk

v2
1 v2

2 . . . v2
k

. . . . . . . . . . . .

vk−1
1 vk−1

2 . . . vk−1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

It is well-known that V always is nonsingular and that its determinant is
∏

1� i<j � r (vi − vj )
mimj .

3.1. Inverse of a confluent Vandermonde matrix

Some identities we use in subsequent sections concern the inverse of V and especially the entries of its last column.
An explicit expression for all entries of V −1 is presented in [4, Eq. (9)]. Here, we recall that the last column of V −1 is
given by the vector

w = (w11, w12, . . . w1m1 |w21, w22, . . . w2m2 | . . . |wr1, wr2, . . . wrmr )
T (3)

where for every � = 1, 2, . . . r and j = 1, . . . , m�, we have

1

D(x)
=

r∑
�=1

m�∑
j=1

w�j

(x − v�)j
(4)
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and the following differential formula holds

w�j = 1

(m� − j)! · dm�−j

dxm�−j

[
1∏

i �=�(x − vi)mi

]
|x=v�

. (5)

Notice that for x �= v we have

dn

dxn
(x − v)−m = (−1)nn!

(
m + n − 1

m − 1

)
(x − v)−m−n.

hence, by applying Leibniz differentiation rule

dn

dxn
(f1(x) · f2(x) · · · fr(x)) = n! ∑

n1+n2+···+nr=n

(∏
i

1

ni ! · dni

dxni
fi(x),

)

we get the following expression for every w�j

w�j = (−1)m�−j ∑
∑

i �=�ni=m�−j

∏
i �=�

(
ni + mi − 1

mi − 1

)
(v� − vi)

−mi−ni . (6)

Proposition 1. Let D(x) be the polynomial defined by Eq. (1) (with distinct v�’s). Consider the confluent
Vandermonde matrix associated with D(x) and let w be the vector defined in (3). Then, for every s = 1, 2, . . . k − 1
the following polynomial is identically null

Ps(x) =
r∑

�=1

min(s,m�)∑
j=1

(
s − 1
j − 1

)
w�j (v� − x)s−j .

Moreover, Pk(0) = 1.

Proof. First notice that Pk(0) = 1 and Ps(0) = 0 for every s = 1, 2, . . . , k − 1. Indeed, such equalities can be written
in matrix form as V · w = (0, . . . , 0, 1)T , which holds true by definition of V and w. Now, fix an integer 1�s�k − 1.

Replacing (v� − x)s−j = ∑s
h=j

(
s−j
h−j

)
v

h−j
� (−x)s−h in Ps(x) we get

Ps(x) =
r∑

�=1

min(s,m�)∑
j=1

s∑
h=j

(
s − 1
h − 1

)(
h − 1
j − 1

)
w�j v

h−j
� (−x)s−h.

Since the set {(h, j) ∈ N2 | 1�j � min(s, m�), j �h�s} equals the set {(h, j) ∈ N2 | 1�h�s, 1�j � min(h, m�)},
the previous expression can be written as

Ps(x) =
s∑

h=1

(
s − 1
h − 1

)
(−x)s−h

r∑
�=1

min(h,m�)∑
j=1

(
h − 1
j − 1

)
w�j v

h−j
� =

s∑
h=1

(
s − 1
h − 1

)
(−x)s−hPh(0)

which is identically null by the previous reasoning. �

Corollary 2. Let V be the Vandermonde matrix defined in (2), where the v�’s are all distinct. Then, the entries
of the last column of V −1 are given by c� = ∏

i �=�(v� − vi)
−1 for � = 1, 2, . . . k and satisfy

∑
�c� v�

k−1 = 1,
∑

�c�

(v� − x)s−1 = 0 for every s = 1, 2, . . . k − 1.

3.2. Multiple convolutions

Confluent Vandermonde matrices are related to the properties of convolutions of families of sequences. More pre-
cisely, consider the rational function

D(0)

D(x)
=

r∏
�=1

( −v�

x − v�

)m�

=
r∏

�=1

(
1 − x

v�

)−m�
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and observe that each (1 − x/v�)
−m� is the generating function of

{(
n+m�−1
m�−1

)
v−n
�

}
n
. Therefore D(0)/D(x) is the

generating function of the sequence {gD(n)}n defined by their convolution, i.e.,

gD(n) = ∑
∑

�n�=n

r∏
�=1

(
n� + m� − 1

m� − 1

)
v

−n�

� . (7)

A key remark for the subsequent discussion is to notice that

gD(n) = ∑
(v

−n11
1 · · · v−n1m1

1 ) · (v
−n21
2 · · · v−n2m2

2 ) · · · (v−nr1
r · · · v−nrmr

r ),

where the sum is extended over all the k-tuples of nonnegative exponents (n11, n12, . . . , nrmr ) whose sum equals n.
In other words, {gD(n)}n is the convolution of the sequences {v−n

� }n, each of them taken with multiplicity m�.

Proposition 3. Let V be the confluent Vandermonde matrix associated with the polynomial D(x) defined by Eq. (1)
and assume that all roots v�’s are non-null. Also, let gD(n) be defined by Eq. (7) for every n ∈ N. Then,

gD(n) = D(0) ·
r∑

�=1

m�∑
j=1

(
n + j − 1

j − 1

)
w�j

(−v�)j
(v�)

−n,

where the w�j ’s are the entries of the last column of V −1.

Proof. The generating function of the sequence {gD(n)}n is given by D(0)/D(x). Then, by Eq. (4) we have

∞∑
n=0

gD(n)xn = D(0)

D(x)
= D(0)

r∑
�=1

m�∑
j=1

w�j

(x − v�)j

and the result follows by applying

1

(x − v�)j
= 1

(−v�)j
· 1

(1 − x/v�)j
= 1

(−v�)j

∞∑
n=0

(
n + j − 1

j − 1

)
(v�)

−nxn. �

4. Vandermonde distributions

In this section we study the properties of a family of density functions naturally associated with confluent Vander-
monde matrices. Let r, k, v�, m� and D(x) be defined as in Section 3. Consider the confluent Vandermonde matrix V
associated with D(x) and the entries w�j ’s of the last column of V −1, for � = 1, 2, . . . , r and j = 1, 2, . . . m�. Now,
assume that all v�’s are real and satisfy the relation 0�v1 < v2 < · · · < vr . Then, we define the real function

fD(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < v1,

(k − 1)
r∑

�=h

m�∑
j=1

(
k − 2
j − 1

)
w�j (v� − x)k−j−1 if vh−1 �x < vh, for some 1 < h�r,

0 if x�vr .

Its features mainly depend on the properties presented in Proposition 1. In particular notice that, for any h ∈ {2, 3, . . . r},
if vh−1 �x < vh, then we obtain

fD(x) = −(k − 1)
h−1∑
�=1

m�∑
j=1

(
k − 2
j − 1

)
w�j (v� − x)k−j−1. (8)

Clearly, fD is continuously differentiable till the order k−2 in R\{v1, . . . , vr} and its (k−2)th derivative is constant in
each interval (v�, v�+1), � = 1, . . . , k−1. Moreover, using Proposition 1, one can verify that, for any � = 1, . . . , k−1,
the function fD is continuous at v� if and only if m� �k −2 (note that this condition is true whenever r �3). In general,
fD is continuously differentiable at v� till the order k − m� − 2.
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4.1. Unimodal property

Here, we prove that the function fD(x) defined above is nonnegative all over R and that, if k�3, then fD is unimodal
in (v1, vr ), that is there exists t ∈ [v1, vr ] such that fD(x) is strictly increasing in [v1, t] and strictly decreasing in
[t, vr ]. Note that, if fD(x) is continuous (all over R) then its unimodality in (v1, vr ) implies the existence of a unique
(local) maximum in (v1, vr ).

To prove these properties, we consider two different cases: k = r or k > r . If k = r , that is m� = 1 for every
� = 1, 2, . . . , r , then fD reduces to

fD(x) =

⎧⎪⎨
⎪⎩

0 if x < v1,

(k − 1)
∑k

j=�cj (vj − x)k−2 if v�−1 �x < v� for some 1 < ��k,

0 if x�vk,

where c� = ∏
i �=�(v� − vi)

−1 for any � = 1, 2, . . . , r . Note that if k = 2 then fD is the uniform density function over
the interval (v1, v2), while for k = 3 we have the triangular distribution. The next proposition shows that, if k = r �3,
then fD is a unimodal function. The proof is based on Corollary 2 and makes use of the following lemma.

Lemma 4. Let f : R → R be a function admitting jth derivative all over R for some j �1. Also assume that,
for some real values a < b, f has m zeros in the interval (a, b) while f (x) = 0 for each x�a and each x�b.
Then, for every i = 1, . . . , j , the ith derivative of f admits at least m + i zeros in (a, b).

Proof. We reason by induction on i = 1, . . . , j . If i = 1, then consider the m + 1 intervals determined by the zeros
of f in [a, b]. For each of them, say (x1, x2), Rolle’s Theorem guarantees that f ′(x) = 0 for some x ∈ (x1, x2).

Now, assume 1 < i < j and consider the ith derivative of f, i.e. the function g = f (i). By the properties of f,
we have g(a) = g(b) = 0 and by the inductive hypotheses g admits m + i zeros in (a, b). Therefore, by applying

the previous argument to g, one proves that g′ = f (i+1) admits m + i + 1 zeros in (a, b). �

Proposition 5. If k = r �3, then fD is unimodal in (v1, vk) and is nonnegative all over R.

Proof. Using Corollary 2, one can prove that fD is strictly increasing in (v1, v2) and strictly decreasing in (vk−1, vk).
In particular, this implies the property for k = 3.

Now, let k�4. Then, fD is continuously differentiable till the order k − 3. Assume by contradiction that fD is not
unimodal. Since the derivative f ′

D is positive in (v1, v2) and negative in (vk, vk−1), this implies that f ′
D necessarily

vanishes in at least 3 points in the interval [v2, vk−1]. For k = 4 this leads to a contradiction because f ′
D is linear in

[v2, v3]. For k > 4, the function f ′
D satisfies the hypotheses of Lemma 4 with j = k − 4, m = 3, a = v1, b = vr .

As a consequence, the (k − 3)th derivative fD
(k−3) of fD admits at least k − 1 zeros in (v1, vk), and this again leads

to a contradiction. Indeed, fD
(k−3)(x) is continuous all over R, it is nonnull for x ∈ (v1, v2) ∪ (vk−1, vk), it is linear

with respect to x in each of the k − 3 intervals (v�, v�+1), � = 2, . . . k − 2, and hence it has at most k − 3 many
zeros in (v1, vk).

Finally, since fD is positive in (v1, v2) ∪ (vk−1, vk) and admits a unique local maximum in (v1, vk), then we can
conclude that fD(x)�0 for every real x. �

To prove that fD is unimodal also when k > r , we use the following lemma, which can be easily proved reasoning
by contradiction [12].

Lemma 6. For every n ∈ N, let fn : R → R be a continuous function that admits a unique local maximum. If {fn}
pointwise converges to a continuous function f : R → R, then f admits a unique local maximum, too.

We are now able to prove the complete property.

Proposition 7. If k�3, then fD is nonnegative all over R and unimodal in (v1, vr ).
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Fig. 1. Plots of function fD for v = (5, 10) and m = (5, 3), v = (5, 15, 55) and m = (3, 3, 2), v = (5, 8, 15, 59, 62) and m = (1, 1, 1, 2, 3),
respectively. The vertical bars indicate the values of vj ’s.

Proof. If r = 2 < k then, by definition of fD and Eq. (6), one can show that

fD(x) = (k − 1)!
(m1 − 1)!(m2 − 1)!

(v2 − x)m1−1(x − v1)
m2−1

(v2 − v1)k−1

for every v1 < x < v2. It is easy to verify that fD is nonnegative and unimodal in (v1, v2). Also note that fD is
continuous unless m1 = 1 or m2 = 1 (and in these cases the only discontinuity point is x = v2 or x = v1, respectively).

If r �3, then fD is continuous and we reason by induction on the integer k − r . If k − r = 0, then the property
is true by Proposition 5. Thus, consider the case k − r > 0. Then, there exists � ∈ {1, 2, . . . , r} such that m� > 1.
Recalling Eq. (8), we may assume � = 1 without loss of generality. Given 0 < � < v1, set v0 = v1 − � and
m0 = 1 (if v1 = 0, a similar result can be obtained by setting v0 = � for any 0 < � < v2). Now, consider the
polynomial

D�(x) = 1

x − v1

r∏
�=0

(x − v�)
m�

and note that D� has r+1 distinct roots v0 < v1 < · · · < vr with multiplicities such that 1+m1−1+m2+· · ·+mr = k.
Thus, also fD� is continuous and, by the inductive hypothesis, we know that fD� is nonnegative in R and unimodal
in (v1, vr ).

Let us study the pointwise convergence of fD�(x) as � goes to zero. If x�vr , then fD(x) = fD�(x) = 0. If x < v1
then, for � small enough, x < v0 and hence fD�(x) = 0 = fD(x). Finally, for any h�2 and vh−1 �x�vh we have

fD�(x) =
r∑

�=h

m�∑
j=1

(
k − 2
j − 1

)
(v� − x)k−j−1w�j (�),

where we use w�j (�) to denote the entries of the last column of V −1
� , V� being the confluent Vandermonde matrix

associated with D�(x). Using Eq. (5), one can easily verify that lim�→0 w�j (�) = w�j for every ��2. Thus, fD�

pointwise converges to fD all over R, and the result follows by applying Lemma 6. �

In Fig. 1, we show the plots of functions fD’s for three polynomials D, which present a rather regular behaviour. In
these examples the number of distinct roots of D (i.e. the value of r) is 2, 3 and 5, respectively, and for each of them
fD(x) is differentiable all over R.

In Fig. 2 four special examples are illustrated which present irregular behaviours. In the first case there are two
distinct roots of D with multiplicity 4 and 1, respectively, and the corresponding function fD is not continuous at
the first root. In the other three examples D has three distinct roots with different sets of multiplicities: in the case
of simple roots fD is a triangular density function (see the second picture); if the array of multiplicities is m =
(1, 4, 1), then fD is continuous but not differentiable at the second root, while the same behaviour occurs at the first
root if m = (4, 1, 1).
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Fig. 2. Plots of function fD for v = (5, 10) and m = (4, 1), v = (5, 15, 55) and m = (1, 1, 1), v = (5, 15, 55) and m = (1, 4, 1), v = (5, 15, 55)

and m = (4, 1, 1), respectively. The vertical bars indicate the values of vj ’s.

4.2. Characteristic function

Here, we prove that fD is a density function. Since it is nonnegative all over R, it is sufficient to prove that∫ +∞
−∞ fD(x) dx = 1. Further, we show that the characteristic function of fD is given by

�D(t) = (k − 1)!
(it)k−1

r∑
�=1

eitv�

m�∑
j=1

w�j

(j − 1)! (it)
j−1. (9)

We will say that a random variable of density function fD(x) is a Vandermonde random variable of parameter D(x).

Proposition 8. Let D be a monic polynomial with at least two distinct roots and assume that all roots are nonnegative
real. Then, the map fD is a density function having characteristic function �D(t).

Proof. We first show that �D(t) = ∫ +∞
−∞ fD(x)eitx dx. Set I (t) = ∫∞

−∞ fD(x)eitx dx and observe that

I (t) = (k − 1)
r∑

h=2

r∑
�=h

m�∑
j=1

(
k − 2
j − 1

)
w�j

∫ v�

v�−1

(v� − x)k−j−1eitx dx.

Integrating by parts one can verify that for t �= 0 the function eitx(c − x)p admits the antiderivative

eitx

it

p∑
s=0

p!(c − x)p−s

(p − s)!(it)s .

Hence we can write I (t) = ∑r
h=2

∑r
�=h(A�,h − A�,h−1) where

A�,h = eitvh

m�∑
j=1

(k − 1)!
(j − 1)!w�j

k−j−1∑
s=0

(v� − vh)
k−j−1−s

(k − j − 1 − s)!(it)s+1

and in particular

A�,� = eitv�

m�∑
j=1

(k − 1)!
(j − 1)! · w�j

(it)k−j
.

Now, set Bh = ∑r
�=hA�,h and Ch = ∑r

�=hA�,h−1. For each 2�h�r − 1 we have Bh − Ch+1 = Ah,h and moreover
Br = Ar,r . Finally, reasoning as in Proposition 1 one can prove that C2 = ∑r

�=1A�,1 − A1,1 = −A1,1. As a
consequence, the integral can be computed as follows

∫ ∞

−∞
fD(x)eitx dx =

r∑
h=2

(Bh − Ch) =
r∑

�=1
A�,� =

r∑
�=1

eitv�

m�∑
j=1

(k − 1)!
(j − 1)! · w�j

(it)k−j
= �D(t).
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The proposition is then proved if we show that limt→0 �D(t) = 1. By expanding eitv� , we get

�D(t) = (k − 1)!
(it)k−1

r∑
�=1

(
∞∑

j=0

v
j
�

j ! (it)
j

)
·
(

m�∑
j=1

w�j

(j − 1)! (it)
j−1

)

= (k − 1)!
∞∑

s=1

(
r∑

�=1

min(s,m�)∑
j=1

v
s−j
�

(s − j)! · w�j

(j − 1)!

)
(it)s−k.

By Proposition 1, the first non-null coefficient in the previous sum is obtained for s = k and equals 1/(k − 1)!. This
concludes the proof. �

5. Rational models for pattern statistics

We now turn our attention to pattern statistics. Here, we recall the definition and the main properties of the rational
stochastic models introduced in [2], based on the classical notion of rational formal series [19,1].

Let R+ be the semiring of nonnegative real numbers and consider the finite alphabet �. A formal series over � with
coefficients in R+ is a function r : �∗ −→ R+, usually represented in the form r = ∑

�∈�∗(r, �) · �, where (r, �)

denotes the value of r at � ∈ �∗. Moreover, r is called rational if it admits a linear representation, that is a triple
(�, �, 	) where, for some integer m > 0, � and 	 are (column) vectors in Rm+ and � : �∗ −→ Rm×m+ is a monoid
morphism, such that (r, �) = �T�(�)	 holds for each � ∈ 
∗. Observe that considering such a triple (�, �, 	) is
equivalent to defining a (weighted) nondeterministic automaton, where the set of states is given by {1, 2, . . . , m} and
the transitions, the initial and the final states are assigned weights in R+ by �, � and 	, respectively. To avoid redundancy
it is convenient to assume that (�, �, 	) is trim (meaning that all indices are used to define the series), i.e. for every index
i there are two indices p, q and two words x, y ∈ �∗ such that �p�(x)pi �= 0 and �(y)iq	q �= 0. We say that (�, �, 	)

is primitive if M = ∑

∈��(
) is a primitive matrix, that is for some n ∈ N all entries of Mn are strictly positive.

We also recall that a matrix M ∈ Rm×m+ is called irreducible if for every pair of indices p, q there exists n ∈ N such
that Mn

pq > 0.
Any formal series can define a stochastic model for studying the frequency of occurrences of a letter in a word of

given length. Consider the binary alphabet {a, b} and, for any n ∈ N, let {a, b}n denote the set of all words of length
n in {a, b}∗. Consider a formal series r : {a, b}∗ −→ R+ and let n be a positive integer such that (r, x) �= 0 for some
x ∈ {a, b}n. A probability measure over {a, b}n can be defined by setting

Pr{�} = (r, �)∑
x∈{a,b}n(r, x)

(� ∈ {a, b}n). (10)

In particular, if r is the characteristic series �L of a language L ⊆ {a, b}∗, then Pr is just the uniform probability
function over L ∩ {a, b}n. Then, we define the random variable (r.v. for short) Yn : {a, b}n → {0, 1, . . . , n} such that
Yn(�) = |�|a for every � ∈ {a, b}n. For every j = 0, 1, . . . , n, we have

Pr{Yn = j} =
∑

|�|=n,|�|a=j (r, �)∑
x∈{a,b}n(r, x)

. (11)

If r = �L for some L ⊆ {a, b}∗, then Yn represents the number of occurrences of a in a word chosen at random in
L∩{a, b}n under uniform distribution. We observe that, in this case, our results concerning Yn are related to the analysis
of additive functions over strings [9].

When r is rational, the r.v. Yn defines a model for the study of pattern statistics we call rational stochastic model.
This is extension of the traditional Markovian models in the following sense. Given a regular set of patterns on an
arbitrary finite alphabet � consider a Markovian source P generating words at random over � and let Xn be the
r.v. representing the number of occurrences of patterns in a word of length n generated by P ; then, there exists a
rational formal series r : {a, b}∗ −→ R+ such that, for every n�1, the corresponding r.v. Yn has the same distribution
as Xn [2, Section 2.1].
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Let (�, �, 	) be a linear representation for the rational series r and set A = �(a), B = �(b), M = A + B. To study
the behaviour of the random variables Yn and in particular their limit distribution, it is useful to introduce the sequence
of functions {rn(z)}n in the complex variable z defined by

rn(z) = ∑
x∈{a,b}n

(r, x) ez|x|a = �T(Aez + B)n	. (12)

Indeed, it is immediate to see that the characteristic function of Yn satisfies the relation

�Yn(t) = E(eitYn) = rn(it)

rn(0)
(13)

for t ∈ R. We recall that a sequence of random variables Xn converges in distribution to a random variable X if and
only if the sequence of characteristic functions �Xn(t) pointwise converges to �X(t) [7].

Now, consider the generating function of {rn(z)}n and observe that

∞∑
n=0

rn(z)w
n = �TH(z, w)	,

where H(z, w) is the matrix defined by

H(z, w) =
∞∑

n=0
(Aez + B)nwn = (I − w(Aez + B))−1. (14)

If M is irreducible, by Perron–Frobenius Theorem (see [21, Theorem 1.5]) it has a nonnegative real eigenvalue 

of maximum modulus. Moreover, we know that the equation Det(yI − Aez − B) = 0 defines an implicit function
y = y(z) which is analytic in a neighbourhood of z = 0 and such that y(0) = 
.

If further M is primitive and A �= 0 �= B, then there are two constants � ∈ (0, 1), � > 0, both depending on the
matrix M and its eigenvectors (see [2] for details), such that, as n tends to infinity, the following relations hold:

E(Yn) = �n + O(1), Var(Yn) = �n + O(1). (15)

Finally, under the same hypothesis, one can prove that the distribution of (Yn − �n)/
√

�n converges to the normal
distribution of mean value 0 and variance 1 [2].

In our investigation we often deal with matrices of functions. We will say that a matrix A(w) is a matrix function if
all its entries are functions of the variable w. We will also say that A(w) is analytic at a point w = a if all its entries
are analytic at the same point; moreover, its radius of convergence at that point is the smallest radius of convergence
of the power series development of its entries (with center in a).

5.1. Decomposition of a rational model

Up to now, the properties of Yn have been studied only in the primitive models [2] and in the case of two primitive
components [5]. Here, we present a general approach to deal with an arbitrary rational model. To this aim, we describe
the construction of the reduced graph of the strongly connected components of the corresponding linear representation.
This is a usual approach in the analysis of counting problems on regular languages (see for instance [8] for an application
concerning trace languages).

Let (�, �, 	) be a linear representation over the alphabet {a, b} with coefficients in R+. As in the previous section,
set A = �(a), B = �(b), M = A + B and consider the directed graph defined by M, where the set of nodes is
{1, 2, . . . , m} and (p, q) is an (oriented) edge if and only if Mpq �= 0. Then, let C1, C2, . . . , Cs be the strongly
connected components of the graph and define Ci initial (resp. final ) if �p �= 0 (resp. 	p �= 0) for some p ∈ Ci . The
reduced graph of (�, �, 	) is then defined as the directed acyclic graph G where C1, C2, . . . , Cs are the vertices and
any pair (Ci, Cj ) is an edge if and only if i �= j and Mpq �= 0 for some p ∈ Ci and some q ∈ Cj .
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Up to a permutation of indices, the matrix M can be represented as a triangular block matrix of the form

M =

⎛
⎜⎜⎝

M1 M12 M13 · · · M1s

0 M2 M23 · · · M2s

· · ·
0 0 0 · · · Ms

⎞
⎟⎟⎠ , (16)

where each Mi corresponds to the strongly connected component Ci and every Mij corresponds to the transitions from
vertices of Ci to vertices of Cj in the original graph of M. Also A, B, � and 	 admit similar decompositions: we
define the matrices Ai, Aij , Bi, Bij and the vectors �i , 	i in the corresponding way and we say that the component
Ci is degenerate if Ai = 0 or Bi = 0. Since each matrix Mi is either null or irreducible, by Perron–Frobenius
Theorem it has a nonnegative real eigenvalue 
i of maximum modulus. We call main eigenvalue of M the value

 = max{
i |i = 1, 2, . . . , s} and we say that Ci is a dominant component if 
i = 
. Observe that 
i = 0 only if Ci

reduces to a loopless single node and hence from now on we assume 
 > 0.
Further, if a matrix Mi is primitive, we say that Ci is a primitive component. In this case, when Ci is not degenerate

(i.e. Ai �= 0 �= Bi), we may consider the constants �i and �i associated with Mi defined as in (15); we have 0 <

�i < 1 and �i > 0. On the contrary, if Ci is degenerate, it is natural to set �i = 0 and define �i = 0 or �i = 1
according whether Ai = 0 or Bi = 0 (so that (15) still holds true for a degenerate r.v.). Thus the constants �i and
�i are well-defined for every primitive component Ci : we say they are the mean constant and the variance constant
of Ci , respectively.

The block decomposition of M also induces a decomposition of the matrix H(z, w) defined in (14). More precisely,
the blocks under the diagonal are all null, while the upper triangular part is composed by a family of matrices,

say Hij (z, w), 1� i�j �s. Note that the bivariate generating function �TH(z, w)	, which is the main tool of our
investigation, is now given by

�TH(z, w)	 =
∞∑

n=0
�T(Aez + B)n	 · wn = ∑

1� i � j � s

�T
i Hij (z, w)	j . (17)

Setting Mij (z) = Aij e
z + Bij and reasoning by induction on j − i, one can prove that, for each 1� i�j �s,

Hij (z, w) =
{

(I − w(Aie
z + Bi))

−1 if j = i,∑
∗Hi1i1(z, w)Mi1i2(z)Hi2i2(z, w) · · · Mi�−1i� (z)Hi�i� (z, w) · w�−1 if j �= i,

(18)

where the sum (∗) is extended over all sequences of integers (i1, i2, . . . , i�), ��2 such that i1 = i, it < it+1 for each
t = 1, . . . , � − 1 and i� = j .

Eq. (18) suggests us to introduce the notion of chain of the reduced graph G associated with (�, �, 	). A chain is a
simple path in G, i.e. a sequence of distinct components � = (Ci1 , Ci2 , . . . , Ci�) where ��1, such that Mij ij+1 �= 0
for every j = 1, 2, . . . , � − 1. We say that � is the length of � while the order of � is the number of its dominant
components. We also denote by � the family of all chains in G starting with an initial component and ending with a
final component. Note that, the linear representation (�, �, 	) being trim, each component lies over at least one chain
in �. We say that a chain � is a main chain if � ∈ � and its order is maximal in �. We denote by �m the set of all
main chains in G.

Example 1. Here, we present a parametric example depending on two constants � ∈ R and � ∈ [0, 1]. For such
parameters let us consider the formal series s�,� having linear representation (�, �, �) such that

�′ = (1, 0), ��,�(a) = � ·
(

0 1
� 0

)
, ��,�(b) = � ·

(
1 0

1 − � 0

)
, � =

(
1
0

)
.

We note that the Perron–Frobenius eigenvalue associated with this linear representation is �(1 + √
5)/2.

Given two families of parameters {�i}i=1,m and {�i}i=1,m, let us define the formal series r given by the Cauchy
product r = ∏m

i=1s�i ,�i
. Its linear representation of size 2m is given by (�, �, 	) where �1 = 1 and �i = 0
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for every i �= 1, 	2i = 0 and 	2i+1 = 1 for every i, while for x ∈ {a, b} � is defined by

�(x) =

⎛
⎜⎜⎜⎜⎜⎝

��1,�1
(x) M12(x) M13(x) · · · M1m(x)

0 ��2,�2
(x) M23(x) · · · M2m(x)

· · ·
0 0 0 · · · ��m,�m

(x)

⎞
⎟⎟⎟⎟⎟⎠ (19)

with

Mij (a) =
(

�j 0
0 0

)
and Mij (b) =

(
0 �j

0 0

)
.

Here, the entries 1, 2, . . . , 2m can be gathered in strongly connected components, defined by the sets Ci = {2i − 1, 2i}
for i = 1, 2, · · · , m. Thus, the reduced graph of (�, �, 	) consists of nodes Ci’s and edges (Ci, Cj ) with i < j . The
component C1 is initial while all Cj ’s are final. The orders of the chains depend on the values �i’s. In particular, when
all �i’s are equal, we have only one main chain of order m. If the �i’s are different, there may be several main chains.
For instance, if m = 4, �2 = �3 and �1 = �4 = 2�2, only C1 and C4 are dominant; therefore we have four main chains,
namely (C1, C2, C3, C4), (C1, C2, C4), (C1, C3, C4) and (C1, C4). �

5.2. The role of main chains

In this section we study the properties of main chains and in particular we show that they determine the limit
distribution of the sequence {Yn} associated with the linear representation (�, �, 	). Intuitively, this is a consequence
of two facts. First, the characteristic function of (a normalization of) Yn depends on the sequences {rn(z)} for z
near 0, and hence on the generating function �TH(z, w)	. Second, by (17), this function is a sum of products of
the form given in (18), each of which is identified by a chain: the products corresponding to the main chains have
singularities of smallest modulus with the largest degree, and hence they yield the main asymptotic contribution to the
associated sequence {rn(z)}.

So, let us take in exam the terms of the sum in the right hand side of (17). First we consider the case i = j and, for
every j = 1, 2, . . . , s, we denote {r(j)

n (z)} the sequence given by

�T
j Hjj (z, w)	j =

∞∑
n=0

r
(j)
n (z)wn.

By relation (18), we have

Hjj (z, w) = (I − w(Aje
z + Bj ))

−1 = Adj(I − w(Aje
z + Bj ))

det(I − w(Ajez + Bj ))

and hence, as z tends to 0, the singularities of each entry approach the inverses of eigenvalues of Mj . We can distinguish
three cases according to the properties of Mj :
(i) Mj is primitive and dominant. Then, 
 is its (sole) eigenvalue of largest modulus. The equation det(yI − (Aj e

z +
Bj )) = 0 implicitly defines a function y = yj (z) in a neighbourhood of z = 0 such that yj (0) = 
. Such a
function is analytic at the point z = 0 and admits an expansion of the form

yj (z) = 


(
1 + �j z + �j + �2

j

2
z2 + O(z3)

)
, (20)

where �j and �j are the mean and variance constants of Cj . Note that this equation is well-defined also when Ci

is degenerate (in particular, if Ai = 0 then yi(z) = 
 for all z).
Then, there exists a matrix function Rj (z) analytic and nonnull at z = 0 such that, for every z near 0,

Hjj (z, w) − Rj (z)

1 − yj (z)w
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has a radius of convergence strictly greater than 
−1. As a consequence we have

r
(j)
n (z) = �T

j Rj (z)	j (yj (z))
n + O(�n)

for some 0 < � < 
 and every z near 0.
(ii) Mj is dominant (but not necessarily primitive). Then, we can consider the family Ej of the eigenvalues of Mj

of largest modulus. By Perron–Frobenius Theorem, we know 
 ∈ Ej and, for every � ∈ Ej , the equation
det(yI − (Aj e

z + Bj )) = 0 implicitly defines a function y = y�(z) in a neighbourhood of z = 0 such that
y�(0) = �. Also y�(z) is analytic at z = 0, where it admits an expansion of the form

y�(z) = �(1 + m�z + s�z
2 + O(z3)) (21)

with m� ∈ R+ and �(s�)�2m2
� (consequence of point (e) in [21, Theorem 1.5]). Reasoning as above this implies,

for z near 0 and some 0 < � < 
,

r
(j)
n (z) = ∑

�∈Ej

�T
j R�(z)	j (y�(z))

n + O(�n)

where R�(z) is a matrix function analytic and nonnull at z = 0, for each � ∈ Ej .
(iii) Mj is not dominant. Then, all its eigenvalues are in modulus smaller than 
 and hence, as z is near to 0 the radius

of convergence of Hjj (z, w) is greater than 
−1. This implies r
(j)
n (z) = O(�n) for some 0 < � < 
 and all z

near 0.
Now, let us study the behaviour of Hij (z, w) for i �= j . Recalling (18), we consider an arbitrary chain � =
(Ci1 , Ci2 , . . . , Ci�) with ��2 and we denote by H�(z, w) the corresponding matrix given by

H�(z, w) = Hi1i1(z, w)Mi1i2(z)Hi2i2(z, w) · · · Mi�−1i� (z)Hi�i� (z, w) · w�−1. (22)

We also define the sequence {r(�)
n (z)} by

�T
i1
H�(z, w)	i�

=
∞∑

n=0
r(�)
n (z)wn. (23)

Then, the next proposition can be proved by applying the previous properties to (22).

Proposition 9. Let � be a chain in � of order k�0. Then, as n tends to +∞, the following statements hold for every
c ∈ C and every t ∈ R:
(1) If k = 0 then rn

(�)(c/n) = O(�n) for some 0 < � < 
;
(2) If k�1 then rn

(�)(c/n) = O(
nnk−1);
(3) If k�1 and the dominant components of � are primitive, then rn

(�)(c/n) = �(
nnk−1);( 2 )
(4) If k�1 then rn

(�)(it/
√

n) = O(
nnk−1).

Proof. Without loss of generality, we may assume � = (C1, C2, . . . , C�). Then, we have

H�(z, w) = H11(z, w)M12(z)H22(z, w) · · · M�−1�(z)H��(z, w) · w�−1 (24)

and it is clear that, for any fixed z, the singularities of �T
1 H�(z, w)	� are those of the matrices Hjj (z, w) for j =

1, 2, . . . , �. If k = 0 and z near 0, the radius of convergence of each Hjj (z, w) is greater than 
−1 and hence rn
(�)

(z) = O(�n) for some 0 < � < 
, which proves point 1.
Now, set I = {j : Cj is dominant} and assume k = �I �1. Let j ∈ I and let z be a complex value near 0. By

property (ii), the dominant singularities of Hjj (z, w) are the simple poles y�(z)
−1, where � ∈ Ej . Thus, the same

values are poles for �T
1 H�(z, w)	� of degree k at most. Hence, rn(�)(z) is bounded by a linear combinations of terms of

the form O(y�(z)
nnk−1), where � ∈ ⋃j∈IEj ; setting z = c/n, by (21), each of them is of the order O(
nnk−1), which

proves point 2.

2 In this work, for any pair of sequences {fn}, {gn} ⊆ C, the expression fn = �(gn) means that for two positive constants a, b the relation
a|gn|� |fn|�b|gn| holds for every n large enough.
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Analogously, setting z = itn−1/2, again by (21) for every � we have

|y�(itn
−1/2)n| =

∣∣∣∣�n

(
1 + m�

it√
n

+ O(1/n)

)∣∣∣∣
n

;

since m� ∈ R this implies

|y�(itn
−1/2)n| = 
n

(
1 + m2

�t
2

n

)n/2

O(1 + 1/n) = O(
n)

and hence rn
(�)(it/

√
n) = O

(∑
�y�(itn−1/2)nnk−1

) = O(
nnk−1), which proves point 4.
Finally, assume Cj primitive for every j ∈ I and let z be a complex value near 0. Then, the main singularities of

�T
1 H�(z, w)	� are the values yj (z)

−1 defined in (i). By (24) this implies

�T
1 H�(z, w)	� = R(z, w)

�j∈I (1 − yj (z)w)
, (25)

where R(z, w) is a function analytic in a disk {w ∈ C||w|�
−1 + d}, for some d > 0. Thus, the leading term of
rn

(�)(z) is determined by the convolution of the sequences {yj (z)
n}n, for j ∈ I ; hence, setting z = c/n and using (20)

we get rn
(�)(c/n) = �(
nnk−1) proving point 3. �

Since by Eq. (17), we have rn(z) = ∑
�∈�r

(�)
n (z), we obtain the following result, which shows the key role of the

main chains. Also note that the property does not hold if the main chains admit nonprimitive dominant components.

Theorem 10. If all dominant components of the main chains are primitive then, for every constant c ∈ C, we have

rn(c/n) = ∑
�∈�m

r(�)
n (c/n)(1 + O(1/n)) = �(
nnk−1),

where k is the order of the main chains.

6. Limit distributions in multicomponent models

Theorem 10 shows that in a multicomponent model the asymptotic behaviour of our statistics mainly depends on the
main chains. This fact leads to study the relevant case when the model has just one main chain. In this case, assuming
further mild conditions on the dominant components, it turns out that the limit distribution of Yn/n coincides with a
Vandermonde distribution. For this reason we introduce the notion of simple model.

Let (�, �, 	) be a linear representation over the alphabet {a, b} with coefficients in R+. We say that (�, �, 	) is a
simple linear representation, or just a simple model, if �m contains only one chain � and every dominant component in
� is primitive.

In simple models the limit distribution of Yn first depends on the order k of �, i.e. the number of its dominant
components. If k�2 the limit distribution is known and derives from the analysis of the bicomponent models given in
[5]; in particular (if the dominant components are not degenerate) we have the following results:
• If � has only one dominant component Ci then the limit distribution of Yn − �in/

√
�in is a Gaussian distribution of

mean value 0 and variance 1.
• If � has two dominant components Ci , Cj then we have the following three subcases:

(1) If �i �= �j then Yn/n converges in law to a random variable uniformly distributed in the interval [b1, b2], where
b1 = min{�i , �j } and b2 = max{�i , �j };

(2) If �i = �j = � but �i �= �j then the limit distribution of (Yn − �n)/
√

n is a mixture of normal distributions
of mean value 0 and variance uniformly distributed in the interval [c1, c2], where c1 = min{�i , �j } and c2 =
max{�i , �j }. In other words, (Yn − �n)/

√
n converges in law to a random variable with density function

f (x) = 1

c2 − c1

∫ c2

c1

e−x2/(2v)

√
2�v

dv,
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which has characteristic function

F(t) = 2
e−c1t

2/2 − e−c2t
2/2

(c2 − c1)t2 .

Notice that F(t) = �P (it2/2) where P(x) = (x − c1)(x − c2);
(3) If �i = �j = � and �i = �j = � then the distribution of (Yn − �n)/

√
�n again converges to a Gaussian

distribution of mean value 0 and variance 1.
Here, we determine the limit distribution of Yn/n for simple models having main chain � of order k�2. We only
assume that � has at least two dominant components with different mean constants. In Section 7 we extend this result
to the case when all dominant components of � have the same mean constant.

Theorem 11. Let Yn be defined in a simple model with main chain � of order k�2. Let �1, . . . , �r denote the mean
constants of the dominant components in � in increasing order and assume r �2. Also, for each � = 1, 2, . . . , r ,
let m� be the multiplicity of ��, that is the number of dominant components in � whose mean constant equals
��. Then, Yn/n converges in law to a Vandermonde random variable associated with the polynomial P(x) =∏r

�=1(x − ��)
m� .

Observe that in the case k = 2 we obtain the result stated in point (1) above. The proof of the theorem is based on
the analysis of the characteristic function of Yn/n, which by Eq. (13) is given by

�Yn/n(t) = rn(it/n)

rn(0)
. (26)

Thus, we first present the following lemma, which provides a useful expression for rn(it/n). To this aim, as in Eq. (7),
let {gQ(n)}n be the sequence having generating function Q(0)/Q(x), where

Q(x) =
r∏

�=1

(
x − 1

1 + ��it/n

)m�

.

Lemma 12. Assume the hypotheses of Theorem 11. Then, for every t ∈ R, as n grows to +∞ we have

rn

(
it

n

)
=

k−1∑
s=0


n−sas

(
it

n

)
· gQ(n − s) · (1 + O(1/n)) (27)

and in particular

rn(0) = nk−1

(k − 1)!
(

k−1∑
s=0


n−sas(0)

)
· (1 + O(1/n)) (28)

where, for each s, as(z) is an analytic function at z = 0.

Proof. By Theorem 10, we get rn(it/n) = r
(�)
n (it/n)(1 + O(1/n)) and hence we have to show that r

(�)
n (it/n) equals

the right hand side of (27). We can evaluate r
(�)
n (it/n) by refining the proof of point 3 in Proposition 9. Indeed, since

H�(z, w) satisfies Eq. (25), we have

�T
1 H�(z, w)	� =

k−1∑
s=0

as(z)w
s ·

r∏
�=1

(1 − f�(z)w)−m� + G(z, w), (29)

where each as(z) is a polynomial in ez, f�(z) = 
(1 + ��z + O(z)) for every � = 1, 2, . . . , r and, for all z near 0, the
function G(z, w) is analytic in a disk {w ∈ C||w|�
−1 + d}, for some d > 0.

Clearly
∏r

�=1(1 − f�(z)w)−m� is the generating function of the sequence whose nth term is

∑
∑

�n�=n

r∏
�=1

(
n� + m� − 1

m� − 1

)
f�(z)

n� .
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Setting z = it/n and recalling Eq. (7), the previous expression can be rewritten as 
ngQ(n) · (1 + O(1/n)). Thus, since

(29) is the generating function of {r(�)
n (z)}n, the main term of r

(�)
n (it/n) is given by the convolution of {an(it/n)}n

and {
ngQ(n)}n, which leads to Eq. (27). Eq. (28) follows by noting that if t = 0, then Q(x) = (x − 1)k and

gQ(n) =
(

n+k−1
k−1

)
. �

Proof of Theorem 11. As n grows to infinity, the behaviour of gQ(n − s) does not depend on s . To prove this fact we
need the following equalities, that can be proved from the definitions given in Section 3. Set v� = (1 − ��it/n)−1, for
every �, j = 1, 2, . . . , r we have

(v�)
−n = e−it�� · (1 + O(1/n)),

(v� − vj )
−1 =

(
− n

it

)
(�� − �j )

−1 · (1 + O(1/n)).

Moreover, if w�j and c�j are the entries of the last column of the Vandermonde matrices associated with the polynomial
Q(x) and P(x) = ∏r

�=1(x − ��)
m� , respectively, then using Eq. (6) one can obtain

w�j =
(
− n

it

)
c�j · (1 + O(1/n)).

As a consequence, applying Proposition 3 and using the previous equalities, one proves that

gQ(n − s) =
( n

it

)k−1
(

r∑
�=1

eit��

m�∑
j=1

c�j

(it)j−1

(j − 1)!

)
· (1 + O(1/n)).

Replacing the previous expression into (27) we get

rn

(
it

n

)
=
( n

it

)k−1
(

r∑
�=1

eit��

m�∑
j=1

c�j

(it)j−1

(j − 1)!

)(
k−1∑
s=0


n−sas

(
it

n

))
· (1 + O(1/n)).

Hence, applying Eq. (26) and recalling Eq. (28), one can see that the characteristic function �Yn/n(t) converges to
�P (t) for every t ∈ R. This proves the result. �

7. Further results

The analysis presented in the previous section can be extended to all simple models, also when the mean constants
�j ’s (associated with the dominant components of the main chain) are totally coincident. In this case, clearly Y

(�)
n /n

converges in distribution to such a constant, and it is natural to consider a finer normalization. With respect to this point,
the following theorem holds, which can be proved as Theorem 11.

Theorem 13. Let Yn be defined in a simple model having main chain � of order k�2 and assume that all dominant
components in � have the same mean constant �. Let �1, . . . , �s be the distinct variance constants (in increasing
order) of the dominant components in � and let m1, m2, . . . , ms denote their multiciplities. If s = 1 and �1 �= 0,
then (Yn − �n)/

√
�1n converges in distribution to a normal random variable of mean 0 and variance 1. Other-

wise, if s > 1, then (Yn − �n)/
√

n converges in distribution to a random variable having characteristic function
�P (it2/2), where �P (t) is the characteristic function of a Vandermonde random variable of parameter P(x) =∏s

�=1(x − ��)
m� .

Notice that, for k = 2, the previous theorem reduces to points (2) and (3) at p. 21.

The results of Theorem 11, concerning the limit distribution of Y
(�)
n /n, can be further extended by a standard

conditioning argument (already used in [5]) to all rational models (�, �, 	) whose main chains are “simple’’, i.e. for
every � ∈ �m all dominant components in � are primitive. In this case, by Eqs. (22) and (23), for every � ∈ �m one
can easily see that

r(�)
n (z) = s�(z)
nnk−1 + O(
nnk−2),
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where k is the degree of � and s�(z) is a nonnull analytic function at z = 0. Then, by Theorem 10, we have

rn(0) = R
nnk−1 + O(
nnk−2)

where R = ∑
�∈�m

s�(0). We can also associate each � ∈ �m with the probability value p�, given by p� = s�(0)/R.
Note that the values {p�}�∈�m

define a discrete probability measure and they can be explicitly computed from the
triple (�, �, 	).

Moreover, each � ∈ �m defines a simple rational model in its own right, with an associate sequence of random
variables {Y (�)

n }. The limit distribution of Y
(�)
n /n can be studied by applying Theorem 11. In particular, Y

(�)
n /n always

converges in distribution to a random variable of distribution function F�(x) defined according to the previous results.
Note that, if all constants �j ’s are here equal, then F�(x) reduces to the degenerate distribution of mass point �1.
Now, it is not difficult to see that the overall statistics Yn/n converges in distribution to a r.v. of distribution function
F(x) defined by F(x) = ∑

�∈�m
F�(x)p�. This completes our analysis of the limit distribution of Y

(�)
n /n. The only

family of rational stochastic models not covered by our results consists of those models having a main chain with some
nonprimitive dominant component; in those cases, periodicity phenomena occur.
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