
Figure 5: Venn diagram showing coverage of Block Model
dimensions by teachers.

MP and RP are more frequently addressed by secondary teachers
than they are by tertiary instructors, whereas AP is less.

We suggest that the �nal goals of achieving ProgComp are related
to the cells found on the upper right corner of the Block Model. This
view is shared by the teachers as the MF category (understanding
the goal/purpose of the program) is the most frequently cited.

Interestingly, all interviewees have at least one reference to
Program execution (P) as shown in Figure 5, most commonly in
combination with Function (F) (51%). Note that one third of them
talk about ProgComp in terms that matched all 3 dimensions (T/P/F),
while none referred only to text surface (T).

As mentioned above, this is probably due to practitioners’ expe-
riences on the di�culty and hence importance of di�erent aspects
in teaching. In the following section we present di�erent learn-
ing activities, obtained — in part — in the interviews, and then in
section 6.3 present some qualitative results of the interviews with
regard to di�culties and hints for possible learning trajectories.

5 COLLECTION AND CLASSIFICATION OF
PROGRAM COMPREHENSION TASKS

Based on literature analysis, discussions within the working group,
and examples of activities provided by our interview participants,
we collected and categorised several types of activities that are
intended to help students develop ProgComp.

The tasks listed in this section also include some common types
of tasks analyzed in Section 3: tracing tasks (AT, AP, RP), a Parsons
problem (BP), “explain in your own words” tasks (BF, RF, MF).

5.1 Methodology
We categorized ProgComp tasks using the Block Model framework.
To implement this, we analysed each of the available tasks consid-
ering both the level of complexity upon which it focuses (atoms,
blocks, relational, macro) and what dimension of the program it
concerns (Text Surface, i.e. syntax; Program Execution, i.e. notional
machine; Functional, i.e. function, purpose or intent of the code).

This approach allowed us to enrich the list of available ProgComp
tasks. Indeed, during the analysis, we found that some parts of the

Block Model matrix were not covered by any task, and this led us
to devise new types of task with the potential to �ll those gaps.

We traverse the Block Model column by column, presenting �rst
task types that pertain to the Text Surface, then the Program when
executed and �nally the Function of the program. For each column
we group the task types starting from the atom level upwards. These
types of task then need to be further speci�ed by applying them
to a particular code fragment. An example of this is presented in
Figure 6.

5.2 Text Surface Tasks
The text dimension of the Block Model is based on the perceivable
representation of a program. In terms of the comprehension process,
reading and comprehending starts by perceiving, which implies
identifying and discriminating between atomic elements in the text,
then recognising their organisation into language structures of
growing complexity, culminating in the overall program structure.

The types of tasks in this category are then focused on statically
detectable properties, i.e. syntax as well as static typing. Even though
we restrict our attention to program notational features, the inher-
ent complexities of language constructs and dependencies may be
overwhelming to students, as demonstrated by Luxton-Reilly et al.
in their in-depth analysis [65]. Luxton-Reilly and colleagues also
provide valuable suggestions as to how to decompose a complex
task (in a novice’s perspective) into more focused components.

Other types of tasks considered in the literature to assess or
develop novices’ understanding of the static properties of programs
include, in particular:
• Tasks requiring �xing compile-time errors introduced within
the code in order to test students’ ability to identify the actual
sources of the problems [55].
• Fill-in-the-gap (e.g. choosing the right keyword) and high-
lighting (e.g. identifying the occurrences of a syntactic con-
cept) tasks to test students’ basic competency in terms of
language syntax [30, 52].
• Parsons-like puzzles involving only the language notation
and tasks requiring to translate an accurate formal de�nition
into code [74].

To be more concrete, we list several speci�c task examples, either
drawn from the literature or suggested by working group members
and participants during the interviews. The examples are classi�ed
according to the rows of the Block Model:

Atom–Text (AT).
• Identify the keywords in a piece of code;
• Box all the assignment statements;
• List all integer variables;
• Box all arithmetic expressions (arithmetic expressions can
be recognised from purely syntactic items);
• Box the headers of all methods/procedures/functions;
• Transform between alternative syntactic forms of atomic
elements (e.g. from i++ to i=i+1).

Block–Text (BT).
• Draw a box around the code of each conditional construct;
• Draw a box around the code of each loop;
• Box the body of each method/procedure/function;



• Check if the parentheses are placed correctly;
• Draw nested boxes to represent the structure of a complex
expression.

Relational–Text (RT).
• Link each occurrence of a variable with its declaration;
• Identify the scope of a variable (assuming static binding);
• Identify where a particular function is called;
• Verify if all expressions are correctly typed;
• Verify if every potential �ow path of a function’s body ends
with a return statement;
• Draw a box around the initialization/termination/increment
expression of a for loop (relational for novices �rst learning
about loop control).

Macro Structure–Text (MT).
• Represent the overall program structure by drawing a “block-
nesting” tree;
• Restructure a program’s code so that library links are at
the top, followed by the de�nition of global variables and
functions/methods, followed by the main program;
• Describe the overall program block structure by drawing
nested boxes;
• Draw a diagram showing the overall program structure;
• Represent the overall program structure by drawing a tree of
function/procedure dependencies (relative to invocations);

5.3 Program Execution Tasks
In order to deal with the dynamic aspects of execution, the infor-
mation provided by the program text is not su�cient, but must
be supplemented with a conceptualization of machine state, estab-
lishing the context(s) in which the program is in action. Thus, the
program dimension of the Block Model focuses on code execution,
or, in technical terms, the operational semantics of a program.

At the heart of any characterisation of the program dimension
lies the construction of a viable mental model of the notional ma-
chine [31]. In this respect, Sorva [112] presents a comprehensive
review of research threads “that have contributed to our understand-
ing of the challenges that novice programmers face when learning
about the runtime dynamics of programs and the role of the com-
puter in program execution”. When engaging with the task of trac-
ing the execution of some piece of code, “sketching” is a common
practice for students in order to overcome the working-memory
load which would be implied by following a long progression of
actions and states in their mind [22, 23, 30, 133].

Several types of tasks focus on sca�olding the learning. Here is
a list of those most frequently encountered in the literature:
• Tasklets that focus on “atomic” aspects of the operational
semantics, by taking a “reductionist” approach to novices’
understanding and learning of programming [65].
• Tracing, predicting and “�ll-in-the-gaps” (within code) tasks
designed to assess novices’ program comprehension [60, 75].
• Proglets, i.e. little programs aimed at reducing the learn-
ers’ cognitive load by exploring a single programming con-
cept [37], when used as the basis of tasks requiring to predict
the program outcome, to modify the code, or simply to ex-
periment freely with it.

• Parsons programming puzzles focusing on the understanding
of the notional machine [28, 45, 82].
• Tasks requiring to trace recursive computations, [43, 74, 99,
102].
• Tasks requiring either to verify reversibility or to write re-
versing code [47, 59, 76, 116].

At a �ne-grain level, also considering the suggestions emerging
from the working group and the interviews, we can classify a range
of examples in terms of the rows of the Block Model:

Atom–Program (AP).
• Trace the program execution for some given input data,
where the program does not include procedural units (note
that this task can be accomplished at the atom level, as a
sequence of several atomic steps, each next step being deter-
mined by the previous one);
• Determine the program output (e.g. what is printed) for
given input data, again where the program does not include
procedural units;
• Determine the value of an expression for given values of the
involved variables;
• Trace a particular sequence of statements for given values
of the involved variables.

Block–Program (BP).
• Determine the number of iterations of a loop construct for a
given initial state (here recognising which repeated step is to
be counted implies reasoning at block level — the repeated
block; in particular, think of a nested conditional in a loop);
• Identify recurring instrumental blocks such as that for swap-
ping the values of two variables (the assumption is that the
identi�cation is based on reasoning about the execution of
short sequences of statements);
• Identify the block(s) implementing some speci�c program
pattern, e.g. among those catalogued by [3] or [87];
• Solve a Parsons puzzle for a speci�c programming pattern.
• Change a for loop into a while loop.

Relational–Program (RP).
• Identify the variable(s) playing a speci�c role (in the example
of Listing 1: stepper, most recent holder, most wanted holder,
walker);
• Trace the program execution for a given input, where the
program includes calls to procedural units (this task requires
to establish connections between states relative to the caller’s
code and to the called procedural unit);
• Verify whether some branches of a switch/case statement
are redundant, i.e. can never be executed;
• Identify states, i.e. values of one or more variables, that could
result in an in�nite loop;
• Identify the scope of a variable.

Macro Structure–Program (MP).
• Verify if a program statement or block is ever reachable
during program execution;
• Identify a comprehensive set of inputs to check all possible
computation �ows of a program;



• Select from given options the program that is computation-
ally equivalent to a reference one, i.e. which gives rise to the
same sequence of variable states for every admissible input
data;
• Explain why two given programs are not computationally
equivalent;
• Estimate the computational costs of the program.

5.4 Function or Purpose Tasks
Relative to the function dimension of the Block Model, a new con-
text, introducing properties extrinsic to the program at hand, comes
into play.

Drawing a borderline between (abstraction on) code execution
features and purpose-driven features is not always straightforward,
and it is likely to depend to a large extent on the knowledge assumed
at a certain learning stage.

However, well-developed tasks exploring this dimension of pro-
gram comprehension are more di�cult to envisage. As pointed
out by Begum and colleagues [5], “[v]ery little research has in-
vestigated the behavior of programmers from understanding the
problem speci�cation to computer program”.

Among the tasks considered in the literature, in which novices
are required to understand the program in connection with an
extrinsic problem domain we can mention the following:
• Tasks asking to explain in words3 [61, 75, 129] the purpose
of a program.
• “Fill-in-the-gaps” tasks designed to assess novices’ under-
standing of the relationships between a program and the
problem being solved [60].
• Parsons puzzles focused on the problem to solve [28, 45, 82].
• Tasks requiring to choose more meaningful names for pro-
gram functional units, or to chunk code segments and de�ne
semantically meaningful functions [74].

In more detail, again by integrating suggestions coming from
the working group as well as the interview participants:

Atom–Function (AF).
• Identify the purpose of an expression or a simple statement,
in connection with the problem domain (e.g. of an expres-
sion/assignment for converting Fahrenheit to Celsius)
• Identify the purpose of a condition w.r.t. the problem domain
(e.g. divisibility for some positive integer);
• Rename a constant with an appropriate name from the prob-
lem.

Block–Function (BF).
• Choose an appropriate name for a simple procedural unit
(method, procedure or function, where the unit body consists
of a simple block);
• Summarise in a short sentence what the block goal is;
• Identify the program block(s) with a given function, de-
scribed in problem-domain terms;
• Write comments explaining the purpose of a block and of
the statements it is built from.

3called in the literature “Explain in plain English” but students may use their native
language instead

Relational–Function (RF).
• Choose an appropriate name for a variable (usually the func-
tion of a variable can be inferred by establishing relationships
between di�erent occurrences of it);
• Summarise in a short sentence the purpose of a simple block
invoking one or more methods/procedures/functions;
• Solve a Parsons puzzle for a given code purpose by reordering
simple blocks (it requires to identify the sub-purpose of each
block and their relationships)
• Identify functionally equivalent blocks, i.e. blocks giving rise
to the same overall state transformation (selection from a
few prede�ned options).

Macro Structure–Function (MF).
• Choose an appropriate name for a program;
• Summarise in a short sentence what the program goal is;
• Select the sentence, from a few options, which most accu-
rately summarises the program’s purpose;
• Create meaningful test cases for the allowed inputs and ex-
pected outputs (test cases are usually based on the program’s
purpose).

5.5 Towards a repository of Learning Activities
Due to time constraints, we were not able to set up a prototype
online repository for the collected tasks. However, it is a long-
term goal to either create or join an open-source “live” repository
where practitioners/teachers as well as researchers in the �eld
of computer science education can �nd and contribute ProgComp
resources. With this goal in mind, we have designed a template to
be attached to each submitted ProgComp activity, which provides
context and supports its use.

The template incorporates the following �elds: the coding that
maps the activity into a Block Model cell; CS as well as ProgComp
pre-requisites; materials provided by instructor; instructions for
students; the new things that students will learn from this activity;
how the activity can be designed as an individual or a team-based
activity; and the perceived engagement as in the ICAP model [16].

To validate the template, which is included in appendix C, a sub-
group �lled a template form for four di�erent types of activities:
(a) identifying the role/purpose of variables, (b) commenting select-
ed/key lines of code or code snippets, (c) tracing, and (d) debugging
(�nding and �xing an error).

It is however to be noticed that discussion within the WG has
only addressed two of the six challenges pointed out in [39] in
connection with the design of similar online repositories, namely
content and (partly) catalogue. If, on the one hand, the focus of our
intended content is per se narrow enough to limit its impact upon
other concomitant features and the organisation in terms of Block
Model provides helpful keys to access such content, on the other
hand several crucial aspects are still to be considered. These include
the other four challenges: curation (how to maintain the repository),
contribution (categories of contributors, e.g. those who generate
content and those who comment on or rate it, and related incentive
and rewards), community (how to enhance recognition), and control
(how to ensure quality and reliability).

In this respect, Fincher et al. [39] illustrate two viable models to
cope with the endeavour of running a content repository.



6 MOVING FROM SINGLE TASKS TO
LEARNING TRAJECTORIES

Learning trajectories (LT) have garnered the attention of math
and science educators [62] because of their ability to model how
student’s thinking about a speci�c topic evolves, which supports
research-based curriculum development [101]. Such research-based
curriculum development has taken place, for example, in the math-
ematics education community [19].

However, empirical knowledge about LT is largely absent in com-
puter science education. One reason is that there is no established
methodology to systematize and de�ne learners’ progression in CS
disciplines. Some recent studies attempted to extract data from the
literature to create learning trajectories for sequence, conditionals,
and repetition [91]; abstraction [89] and debugging [90]. These LT
provide a path for particular aspects for programming and com-
prehension, but to the best of our knowledge, there is no learning
trajectory for ProgComp as an integrative skill.

Complex tasks such as program comprehension favor the holistic
integration of knowledge, skills, and attitudes to avoid fragmen-
tation, promote meaningful schema creation and facilitate near
transfer [124]. To achieve such goals, frameworks such as the Four
Components Instructional Design (4C/ID [123]) provide a blue-
print to sequence learning tasks in a trajectory from less to more
complex tasks, promoting schema creation while not exceeding
learner’s cognitive load capacity. It also presents a guide of how
to provide sca�olding to learners, decreasing support so learners
can gradually accommodate increasingly complex schemas and at
the end of instruction be able to perform in an authentic complex
environment.

Our work with LT is inspired by such instructional design frame-
works and in the following sections, we outline how to sequence
tasks based on their di�culty and with decreasing levels of support
for ProgComp.

This methodology could assist instructors in two ways. First, it
provides practical examples for instructors on how to decompose a
task that fosters ProgComp into sub-tasks that reduce the complexity
with respect to the overall task, making it suitable for beginners,
and later move to more advanced levels of complexity aimed to
advanced learners, working on di�erent aspects of ProgComp, as
presented by the cells of the Block Model. Second, it provides a
guideline that could help instructors identify where a speci�c task
�ts into the Block Model and what particular aspects of program
comprehension are being fostered.

6.1 Methodology
Using the work of Lister and colleagues as a starting point, the
“Leeds” ITiCSE working group Lister et al. [60] concluded that stu-
dents lacked basic skills pre-requisite for problem-solving, such
as comprehending program code. More recently, assessment tasks
were found to be more complex than academics expected [65]. For
example, tasks typically require both algorithmic thinking (such
as initializing a variable before updating it), as well as a more ad-
vanced understanding of data representation (assigning a value to a
property) [105]. In their research, Luxton-Reilly et al. [65] state that
most assessments used in formal examinations combine numerous
heterogeneous concepts, resulting in complex and di�cult tasks.

To develop tasks to determine a student’s mastery of particular
concepts, the Luxton-Reilly et al. 2017 ITiCSE working group de-
composed complex assessments into atomic conceptual elements
which can be assessed independently. Their work, which extends
the McCracken et al. [70] research, shows that a single code-writing
task often involves a plethora of conceptual knowledge.

Duran et al. [34] de�ne these atomic elements as plans and sub-
plans that can be extracted from concrete programs by analyzing
the relationship of syntactic and semantic elements in the code
and the respective cognitive actions leaners need to perform to
comprehend the program. Our work uses Duran et al. model to
provide cues on how to decompose a ProgComp task into sub-tasks
and �t them in the Block Model. What becomes evident is that
comprehending code too can be decomposed into multiple facets,
each of which can be practiced independently.

The LT for ProgComp de�nes a spectrum of activities that will
foster programming comprehension using as many cells in the
Block Model as desired by the instructor. Di�erent cells usually
will use di�erent activities (see section 5 for examples) that are
better suited to achieve the desired learning outcome. Creating a
LT is an iterative process where the instructor evaluate leaner’s
prior-knowledge in a particular context (e.g. using tests [81] or
self-evaluation instruments [32, 33]) to identify a sub learning-
outcome appropriate to learners’ needs (extracted from the main
task learning outcome), match this learning outcome to a given
Block Model cell and use an appropriate activity to foster ProgComp
at that cell. The process repeats until the instructor is satis�ed with
the granularity of the LT (the number of activities in di�erent cells)
or if the LT reaches the lowest level of complexity in the Block
Model (the sub-task is already simple enough, e.g. uses an Atomic-
Text-Surface activity) and no further re�nements are required.

LT could be used by instructors in two di�erent ways, depending
on their goal. In the �rst one, the instructor iterates through task’s
learning outcomes and evaluate if students’ needs, prior knowledge,
and granularity will be addressed with a proposed spectrum of
activities. If tasks are too easy or too di�cult the instructor can
further decompose the tasks until a saturation point is reached. In
a second way, the instructor follows an already de�ned learning
trajectory, using the planned tasks to identify gaps in the existing
set of activities and integrate new activities where needed. The LT
could also work in tandem with diagnosing tools, where learners’
di�culties in a particular cell of the Block Model could be mitigated
by using the appropriate activities.

In the next section, we provide an example of a walkthrough of
the development of an LT where a task may seem too challenging
for some learners or have some implicit assumptions that may not
match the instructor’s cohort.

6.2 Using the Block Model to Develop a
Trajectory

As an example of LT, we take a typical comprehension task, to
summarise the goal of a program in a short sentence (i.e. an “explain
in plain English” task, as described in section 5), and show how it
can be decomposed into subtasks, each �tting into one of the cells
in the Block Model matrix.


