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Whole human genome sequencing

@ Modern DNA sequencing machines produce a lot of data!

e.g. lllumina HiSeq 2000: > 40Gbases of sequence per day (paired
100-mers)

@ Whole human genome sequencing: about 3Gbase genome typically
sampled to 20 to 30-fold redundancy to ensure adequate coverage of
both copies (i.e. each position in the genome sampled 30 times, on
average)

@ Datasets of 100 Gbases or more are common

@ Applications: Comparing of genomes, assembl, alignment, - - -



The BWT

@ The BWT is a reversible transformation that produces a permutation
bwt(v) of an input sequence v, defined over an ordered alphabet ¥,
so that occurrences of a given symbol tend to occur in clusters in the
output sequence.
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The BWT

@ The BWT is a reversible transformation that produces a permutation
bwt(v) of an input sequence v, defined over an ordered alphabet ¥,
so that occurrences of a given symbol tend to occur in clusters in the
output sequence.

@ Traditionally the major application of the Burrows-Wheeler Transform
has been for Data Compression. The BWT represents for instance the
heart of the BZIP2 algorithm.

@ Today, there are reports of the application of the BWT in
bio-informatics, full-text compressed indexes, prediction and entropy
estimation, and shape analysis in computer vision, etc.
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The BWT in bioinformatics

o BWT-based text indexes are the core of popular mapping programs
@ Bowtie (Langmead et al.,Genome Biology 2009)
@ BWA (Li and Durbin, Bioinformatics 2009, 2010)
© SOAP2 (Li et al., Bioinformatics 2009)
@ Create index from reference genome (e.g. human)
create once, use many times
@ Simpson and Durbin, Bioinformatics 2010: FM-index of a set of DNA
sequences for overlap detection stage of de novo assembly
See also Valimaki et al., CPM 2010
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BWT of a collection of strings

@ BWT extended to set of strings by S. Mantaci et al. (CPM 2005, TCS
2007) by using a different ordering of the conjugates of the strings.
@ original BWT of concatenated strings

o Straightforward to compute BWT from suffix array.
o Lots of work on efficient linear time SA generation methods.
e But: need to hold SA in RAM (Simpson et al. estimate 700Gbytes
RAM for SA of 60 Gbases of data)
o Other options:
o Siren, SPIRE 2009: divide collection into batches, compute BWT of
each then merge

o Ferragina et al., Latin 2010: partition string 7" into blocks 75 - - - 17,
create SA of each in turn
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Observations

Let S be a collection of m strings of length k£ on an alphabet of o letters.
Our algorithm computes the BWT of S

without concatenating the strings belonging to S and without needing
to compute their suffix array.

incrementally via k iterations. At each of the iterations
j=1,2,...,k, the algorithm computes a partial BWT string bwt;(S)
by inserting the symbols preceding the j-suffixes of S at their correct
positions into bwt;_1(S). Each iteration j simulates the insertion of
the j-suffixes in the suffix array.

The string bwt;(S) is a ‘partial BWT' in the sense that the addition
of m end markers in their correct positions would make it the BWT of
the collection {Si[k —j — 1, k], So[k —j — 1, k],...,Sm[k—j—1,k]}.
This insertion does not affect the relative ordering of symbols inserted
during previous iterations.
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j-suffix of S; is the last j non-$ symbols of that string and O-suffix of .S; is
$;.

At stage 7, insert the characters associated with the j-suffixes into the
partial BWT.
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BWT of a collection Idea

Observation
LF[i] = C[L[i]] + rank(L[i],i — 1)

We can think of bwt;(S) as being partitioned into o + 1 strings

B;(0), Bj(1),...,Bj(0), with the symbols in Bj(h) being those that are
associated with the suffixes of S that are of length j or less and begin with
co=%andc,€eX, forh=1,...,0.
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Observation
LF[i] = C[L[i]] + rank(L[i],i — 1)

We can think of bwt;(S) as being partitioned into o + 1 strings

B;(0), Bj(1),...,Bj(0), with the symbols in Bj(h) being those that are
associated with the suffixes of S that are of length j or less and begin with
co=%andc,€eX, forh=1,...,0.

F L

xS 3

BO) 0% a b r a ¢ a
B(l) 1 a $ a b r a ¢
2 a b r aca$

3 aca$ ad r

B(2) 4 b r a c a $ «
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We do not need the array C'. We only need the rank function.
We note that B;(0) is constant for all j and, at each iteration j, we store B;(h)
in o + 1 external files that are sequentially read one-by-one.
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Two versions of our algorithm: BCR vs.

BCRext

BCR BCRext
CPU time O(ksort(m)) O(km)

RAM usage (bits) | O((m + o2)log(mk)) | O(c*log(mk))
1/O (bits) O(mk?log(s)) O(mk3log(o))
(partial BWT) (partial BWT)
O(mklog(o)) O(mk?log(c))

(sequence slices) (sequences)
O(mklog(mk))

(P — array)
O(mklog(m))

(N — array)




BWT of a collection Experiments

Performance on human DNA sequence data

Dataset size Program Wallclock time CPU Max RAM
(millions of 100-mers) | Program | (us per input base) | efficiency (%) (Gbyte)
85 bwte 7.99 99 4.00

rlcsa 2.44 99 13.40

BCR 1.01 83 1.10
BCRext 4.75 27 negligible

1000 BCR 5.74 19 13.00
BCRext 5.89 21 negligible




Further works

@ Able to compute BWT of 1 billion 100-mers in under 24 hours

@ Ongoing work:
e Further optimizations to construction, parallelization
e Software library for construction/querying of BWT of large string
collections
e Algorithm can be adapted to allow sets of strings to be added/removed
from collection
o Applications of BWT of string collection to bioinformatics
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