Lightweight BWT Construction for
Very Large String Collections

Markus J. Bauer, Anthony J. Cox and Giovanna Rosone

Computational Biology Group, lllumina Cambridge Ltd., United Kingdom
Dipartimento di Matematica e Informatica, University of Palermo, Palermo, ITALY

Workshop PRIN, 5-7 September 2011

Whole human genome sequencing

@ Modern DNA sequencing machines produce a lot of data!

e.g. lllumina HiSeq 2000: > 40Gbases of sequence per day (paired
100-mers)

@ Whole human genome sequencing: about 3Gbase genome typically
sampled to 20 to 30-fold redundancy to ensure adequate coverage of
both copies (i.e. each position in the genome sampled 30 times, on
average)

@ Datasets of 100 Gbases or more are common

@ Applications: Comparing of genomes, assembl, alignment, - - -

The BWT

@ The BWT is a reversible transformation that produces a permutation
bwt(v) of an input sequence v, defined over an ordered alphabet ¥,
so that occurrences of a given symbol tend to occur in clusters in the
output sequence.

Burrows-Wheeler Transform How does BWT work?

The BWT

@ The BWT is a reversible transformation that produces a permutation
bwt(v) of an input sequence v, defined over an ordered alphabet ¥,

so that occurrences of a given symbol tend to occur in clusters in the
output sequence.

@ Traditionally the major application of the Burrows-Wheeler Transform
has been for Data Compression. The BWT represents for instance the
heart of the BZIP2 algorithm.

The BWT

@ The BWT is a reversible transformation that produces a permutation
bwt(v) of an input sequence v, defined over an ordered alphabet ¥,
so that occurrences of a given symbol tend to occur in clusters in the
output sequence.

@ Traditionally the major application of the Burrows-Wheeler Transform
has been for Data Compression. The BWT represents for instance the
heart of the BZIP2 algorithm.

@ Today, there are reports of the application of the BWT in
bio-informatics, full-text compressed indexes, prediction and entropy
estimation, and shape analysis in computer vision, etc.

How does BWT work?

@ BWT takes as input a text v, append $ to the end of v ($ is unique
and smaller then any other character) and produces:
e a permutation bwt(v) of the letters of v$.
e the index I, that is useful in order to recover the original word v.

How does BWT work?

@ BWT takes as input a text v, append $ to the end of v ($ is unique
and smaller then any other character) and produces:

e a permutation bwt(v) of the letters of v$.
e the index I, that is useful in order to recover the original word v.

o Example: v = abraca

How does BWT work?

@ BWT takes as input a text v, append $ to the end of v ($ is unique
and smaller then any other character) and produces:

e a permutation bwt(v) of the letters of v$.
e the index I, that is useful in order to recover the original word v.

o Example: v = abraca

M
) o Each row of M is a conjugate of v$ F L
in lexicographic order. N b
e bwt(v) coincides with the last 0 8 abrac “
column L of the BW-matrix M. La $a b rac
I-2 a b r a c a $
e The index [is the row of M 3 a ¢c a $ a b r
containing the original sequence 4 b r a ¢ a $ a
followed by $. 5 ¢c a $ a b r a
6 r a ¢c a $ a b

Burrows-Wheeler Transform How does BWT work?

Properties

The following properties hold:
Q Foralli=0,...,|v|, i # I, the character F[i] follows L[7] in the
original string;
@ for each character ¢, the r-th occurrence of ¢ in F' corresponds to the
r-th occurrence of ¢ in L.

Burrows-Wheeler Transform How does BWT work?
Properties

The following properties hold:
Q Foralli=0,...,|v|, i # I, the character F[i] follows L[7] in the
original string;

@ for each character ¢, the r-th occurrence of ¢ in F' corresponds to the
r-th occurrence of ¢ in L.

M

F L

! !

0 %$ a b r a ¢ a

1 a $ a b r a c¢
I—-2 a b r a c a $
3 a ca$ a b r

4 b r a c a $ «a

5 ¢c a % a b r a

6 r a c a $ a D

Burrows-Wheeler Transform How does BWT work?
Properties

The following properties hold:
Q Foralli=0,...,|v|, i # I, the character F[i] follows L[7] in the
original string;
@ for each character ¢, the r-th occurrence of ¢ in F' corresponds to the
r-th occurrence of ¢ in L.

Ferragina and Manzini (2000) noticed the following connection:

LF[i| = C[L[i)] + rank(Lil,i—1) 4,

F L

! !

0 %$ a b r a ¢ a

1 a $ a b r a c¢
I—-2 a b r a c a $
3 a ca$ a b r

4 b r a c a $ «a

5 ¢c a % a b r a

6 r a c a $ a D

Burrows-Wheeler Transform How does BWT work?
Properties

The following properties hold:
Q Foralli=0,...,|v|, i # I, the character F[i] follows L[7] in the
original string;
@ for each character ¢, the r-th occurrence of ¢ in F' corresponds to the
r-th occurrence of ¢ in L.

Ferragina and Manzini (2000) noticed the following connection:

LF[i| = C[L[i)] + rank(Lil,i—1) 4,

F L

) { {

For instance: 0% a b r a ¢ a
if i =5 then L[i] = a and 1 a $ a b r a ¢
LF[5] = Cla] + rank(a,4) =1+2=3 I—-2 a b r a c a §
3 a ca$ a b r

4 b r a c a $ «a

5 ¢c a % a b r a

6 r a c a $ a D

The BWT in bioinformatics

o BWT-based text indexes are the core of popular mapping programs
@ Bowtie (Langmead et al.,Genome Biology 2009)
@ BWA (Li and Durbin, Bioinformatics 2009, 2010)
© SOAP?2 (Li et al., Bioinformatics 2009)

The BWT in bioinformatics

o BWT-based text indexes are the core of popular mapping programs
@ Bowtie (Langmead et al.,Genome Biology 2009)
@ BWA (Li and Durbin, Bioinformatics 2009, 2010)
© SOAP2 (Li et al., Bioinformatics 2009)
@ Create index from reference genome (e.g. human)
create once, use many times

The BWT in bioinformatics

o BWT-based text indexes are the core of popular mapping programs
@ Bowtie (Langmead et al.,Genome Biology 2009)
@ BWA (Li and Durbin, Bioinformatics 2009, 2010)
© SOAP2 (Li et al., Bioinformatics 2009)
@ Create index from reference genome (e.g. human)
create once, use many times
@ Simpson and Durbin, Bioinformatics 2010: FM-index of a set of DNA
sequences for overlap detection stage of de novo assembly
See also Valimaki et al., CPM 2010

BWT of a collection of strings

@ BWT extended to set of strings by S. Mantaci et al. (CPM 2005, TCS
2007) by using a different ordering of the conjugates of the strings.

BWT of a collection of strings

@ BWT extended to set of strings by S. Mantaci et al. (CPM 2005, TCS
2007) by using a different ordering of the conjugates of the strings.
@ original BWT of concatenated strings

BWT of a collection of strings

@ BWT extended to set of strings by S. Mantaci et al. (CPM 2005, TCS
2007) by using a different ordering of the conjugates of the strings.
@ original BWT of concatenated strings

o Straightforward to compute BWT from suffix array.
o Lots of work on efficient linear time SA generation methods.

BWT of a collection of strings

@ BWT extended to set of strings by S. Mantaci et al. (CPM 2005, TCS
2007) by using a different ordering of the conjugates of the strings.
@ original BWT of concatenated strings

o Straightforward to compute BWT from suffix array.

o Lots of work on efficient linear time SA generation methods.

e But: need to hold SA in RAM (Simpson et al. estimate 700Gbytes
RAM for SA of 60 Gbases of data)

BWT of a collection Introduction

BWT of a collection of strings

@ BWT extended to set of strings by S. Mantaci et al. (CPM 2005, TCS
2007) by using a different ordering of the conjugates of the strings.
@ original BWT of concatenated strings

o Straightforward to compute BWT from suffix array.
o Lots of work on efficient linear time SA generation methods.
e But: need to hold SA in RAM (Simpson et al. estimate 700Gbytes
RAM for SA of 60 Gbases of data)
o Other options:
o Siren, SPIRE 2009: divide collection into batches, compute BWT of
each then merge

o Ferragina et al., Latin 2010: partition string 7" into blocks 75 - - - 17,
create SA of each in turn

Observations

Let S be a collection of m strings of length k£ on an alphabet of o letters.

Observations

Let S be a collection of m strings of length k£ on an alphabet of o letters.
Our algorithm computes the BWT of S

Observations

Let S be a collection of m strings of length k£ on an alphabet of o letters.
Our algorithm computes the BWT of S

@ without concatenating the strings belonging to S and without needing
to compute their suffix array.

BWT of a collection Introduction

Observations

Let S be a collection of m strings of length k£ on an alphabet of o letters.
Our algorithm computes the BWT of S

@ without concatenating the strings belonging to S and without needing
to compute their suffix array.

@ incrementally via k iterations. At each of the iterations
j=1,2,...,k, the algorithm computes a partial BWT string bwt;(S)
by inserting the symbols preceding the j-suffixes of S at their correct
positions into bwt;_1(S). Each iteration j simulates the insertion of
the j-suffixes in the suffix array.

Observations

Let S be a collection of m strings of length k£ on an alphabet of o letters.
Our algorithm computes the BWT of S

@ without concatenating the strings belonging to S and without needing
to compute their suffix array.

@ incrementally via k iterations. At each of the iterations
j=1,2,...,k, the algorithm computes a partial BWT string bwt;(S)
by inserting the symbols preceding the j-suffixes of S at their correct
positions into bwt;_1(S). Each iteration j simulates the insertion of
the j-suffixes in the suffix array.

@ The string bwt;(S) is a ‘partial BWT' in the sense that the addition
of m end markers in their correct positions would make it the BWT of
the collection {Si[k —j — 1, k], So[k —j — 1, k],...,Sm[k—j—1,k]}.

Observations

Let S be a collection of m strings of length k£ on an alphabet of o letters.
Our algorithm computes the BWT of S

without concatenating the strings belonging to S and without needing
to compute their suffix array.

incrementally via k iterations. At each of the iterations
j=1,2,...,k, the algorithm computes a partial BWT string bwt;(S)
by inserting the symbols preceding the j-suffixes of S at their correct
positions into bwt;_1(S). Each iteration j simulates the insertion of
the j-suffixes in the suffix array.

The string bwt;(S) is a ‘partial BWT' in the sense that the addition
of m end markers in their correct positions would make it the BWT of
the collection {Si[k —j — 1, k], So[k —j — 1, k],...,Sm[k—j—1,k]}.
This insertion does not affect the relative ordering of symbols inserted
during previous iterations.

BWT of a collection Introduction
Example

Let S = {S1,S2,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of 0 = 4 letters.

01234567
S1 $1
Sa $o
S'g, $3

We suppose that $1 < $2 < $3< A< C <G <T.

j-suffix of S; is the last j non-$ symbols of that string and O-suffix of .S; is
$;.

At stage 7, insert the characters associated with the j-suffixes into the
partial BWT.

BWT of a collection Introduction
Example

Let S = {S1,S2,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of 0 = 4 letters.

0123|4567
S1 C| %
So C| %2
Ss T | %3

We suppose that $1 < $2 < $3< A< C <G <T.
j-suffix of S; is the last j non-$ symbols of that string and O-suffix of .S; is

$i.

At stage 7, insert the characters associated with the j-suffixes into the

partial BWT.

BWT of a collection Introduction
Example

Let S = {S1,S2,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of 0 = 4 letters.

0123 |4 5|67
S1 AlC|$
So T|C| $
S3 T|T| %3

We suppose that $1 < $2 < $3< A< C <G <T.
j-suffix of S; is the last j non-$ symbols of that string and O-suffix of S; is

$i.

At stage 7, insert the characters associated with the j-suffixes into the

partial BWT.

BWT of a collection Introduction
Example

Let S = {S1,S2,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of 0 = 4 letters.

0123|4567
S1 AlA|C|$
So C|T|C]|$
S3 C|T|T]|$;

We suppose that $1 < $2 < $3< A< C <G <T.

j-suffix of S; is the last j non-$ symbols of that string and O-suffix of S; is
$;.

At stage 7, insert the characters associated with the j-suffixes into the
partial BWT.

BWT of a collection Introduction
Example

Let S = {S1,S2,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of 0 = 4 letters.

O(1(2]|3|4 5|67
S1 ClAJA|C|$:
S G|C|T|C|$
S3 G|C|T|T|S$;

We suppose that $1 < $2 < $3< A< C <G <T.
j-suffix of S; is the last j non-$ symbols of that string and O-suffix of S; is

$i.

At stage 7, insert the characters associated with the j-suffixes into the

partial BWT.

BWT of a collection Introduction
Example

Let S = {S1,S2,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of 0 = 4 letters.

O(1(2]|3|4 5|67
S1 CICI|AIA|C|%
So AlG|C|T|C|$
S3 C|G|C|T|T|8$3

We suppose that $1 < $2 < $3< A< C <G <T.
j-suffix of S; is the last j non-$ symbols of that string and O-suffix of S; is

$i.

At stage 7, insert the characters associated with the j-suffixes into the

partial BWT.

BWT of a collection Introduction
Example

Let S = {S1,S2,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of 0 = 4 letters.

O(1(2]|3|4 5|67
S1 G|IC|CIAA|C|S$
So GI|A|G|C|T|C|$
Ss T|C|G|C|T|T|8$;

We suppose that $1 < $2 < $3< A< C <G <T.
j-suffix of S; is the last j non-$ symbols of that string and O-suffix of S; is

$i.

At stage 7, insert the characters associated with the j-suffixes into the

partial BWT.

BWT of a collection Introduction
Example

Let S = {S1,S2,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of 0 = 4 letters.

O(1(2]|3|4 5|67
S1|T|G|C|C|AJA|C|$
S| A|G|A|G|C|T|C|$
S3|G|T|C|G|C|T|T|$3

We suppose that $1 < $2 < $3< A< C <G <T.

j-suffix of S; is the last j non-$ symbols of that string and O-suffix of S; is
$;.

At stage 7, insert the characters associated with the j-suffixes into the
partial BWT.

BWT of a collection Introduction
Example

Let S = {S1,S2,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of 0 = 4 letters.

O(1(2]|3|4 5|67
Si|T|G|C|C|AJA|C|S
S| A|G|A|G|C|T|C|$%
S3|G|T|C|G|C|T|T|$;

We suppose that $1 < $2 < $3< A< C <G <T.

j-suffix of S; is the last j non-$ symbols of that string and O-suffix of S; is
$;.

At stage 7, insert the characters associated with the j-suffixes into the
partial BWT.

BWT of a collection Introduction

Iteration 0

Let S = {51,52,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of o = 4 letters.

0123|4567
Sl $1
So $2
53 $3

BWT of a collection Introduction

Iteration 0

Let S = {51,52,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of o = 4 letters.

0(1(2(3|4|5|6|7
S1 C| %
So C| %2
Ss T | %3

BWT of a collection Introduction

Iteration 0

Let S = {51,52,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of o = 4 letters.

0(1(2(3|4|5|6|7
S1 C| %
So C| %2
Ss T | %3

We obtain:

NIQQ

BWT of a collection Introduction

Iteration 0

Let S = {51,52,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of o = 4 letters.

0123|4567
S AlC |9
So T|C|$s
S3 T|T | $3

We obtain:

NIQQ

BWT of a collection Introduction

Iteration 0

Let S = {51,52,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of o = 4 letters.

0123|4567
S AlC |9
So T|C|$s
S3 T|T | $3

We obtain:

NIQQ

BWT of a collection Introduction

Iteration 0

Let S = {51,52,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of o = 4 letters.

0123|4567
S AlC |9
So T|C|$s
S3 T|T | $3

We obtain:

NIQQ

BWT of a collection Introduction

Iteration 0

Let S = {51,52,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of o = 4 letters.

0123|4567
S AlC |9
So T|C|$s
S3 T|T | $3

We obtain:

NIQQ

BWT of a collection Introduction

Iteration 0

Let S = {51,52,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of o = 4 letters.

0123|4567
S AlC |9
So T|C|$s
S3 T|T | $3

We obtain:

NIQQ

BWT of a collection Introduction

Iteration 0

Let S = {51,52,53} = {TGCCAAC, AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of o = 4 letters.

0123|4567
S1 AlC|$
So T|C | %9
S3 T|T| %3

We obtain:

NIQQ

BWT of a collection Idea

Observation
LF[i] = C[L[i]] + rank(L[i],i — 1)

We can think of bwt;(S) as being partitioned into o + 1 strings

B;(0), Bj(1),...,Bj(0), with the symbols in Bj(h) being those that are
associated with the suffixes of S that are of length j or less and begin with
co=%andc,€eX, forh=1,...,0.

F L

xS 3

BO) 0% a b r a ¢ a
B(l) 1 a $ a b r a ¢
2 a b r aca$

3 aca$ ad r

B(2) 4 b r a c a $ «
BB) 5 ¢c a $ a b r a
B4) 6 r a c a $ a b

BWT of a collection Idea

Observation
LF[i] = C[L[i]] + rank(L[i],i — 1)

We can think of bwt;(S) as being partitioned into o + 1 strings

B;(0), Bj(1),...,Bj(0), with the symbols in Bj(h) being those that are
associated with the suffixes of S that are of length j or less and begin with
co=%andc,€eX, forh=1,...,0.

F L

xS 3

BO) 0% a b r a ¢ a
B(l) 1 a $ a b r a ¢
2 a b r aca$

3 aca$ ad r

B(2) 4 b r a c a $ «
BB) 5 ¢c a $ a b r a
B4) 6 r a c a $ a b

We do not need the array C'. We only need the rank function.

BWT of a collection Idea

Observation
LF[i] = C[L[i]] + rank(L[i],i — 1)

We can think of bwt;(S) as being partitioned into o + 1 strings

B;(0), Bj(1),...,Bj(0), with the symbols in Bj(h) being those that are
associated with the suffixes of S that are of length j or less and begin with
co=%andc,€eX, forh=1,...,0.

F L

xS 3

BO) 0% a b r a ¢ a
B(l) 1 a $ a b r a ¢
2 a b r aca$

3 aca$ ad r

B(2) 4 b r a c a $ «
BB) 5 ¢c a $ a b r a
B4) 6 r a c a $ a b

We do not need the array C'. We only need the rank function.

BWT of a collection Idea

Observation
LF[i] = C[L[i]] + rank(L[i],i — 1)

We can think of bwt;(S) as being partitioned into o + 1 strings

B;(0), Bj(1),...,Bj(0), with the symbols in Bj(h) being those that are
associated with the suffixes of S that are of length j or less and begin with
co=%andc,€eX, forh=1,...,0.

F L

xS 3

BO) 0% a b r a ¢ a
B(l) 1 a $ a b r a ¢
2 a b r aca$

3 aca$ ad r

B(2) 4 b r a c a $ «
BB) 5 ¢c a $ a b r a
B4) 6 r a c a $ a b

We do not need the array C'. We only need the rank function.
We note that B;(0) is constant for all j and, at each iteration j, we store B;(h)
in o + 1 external files that are sequentially read one-by-one.

Looking in detail at iteration 6

0
1
2

[

=] DU WO

-

B5(0)
C

C
T

Bs(1)
C

W
2 on
N

QQHd0Q>

B5(3)

Qs

o]
ot
~
&

QaQHX

Associated Suffixes
$1
B2
$3

Associated Suffixes
AACS,

AC$q

AGCTCS$2

Associated Suffixes
C$q

C$y

CAACS,
CCAAC$;
CGCTTS$3
CTC$o

CTT$3

Associated Suffixes
GCTCS$2
GCTT$3

Associated Suffixes
T$3

TC$o

TT$3

TGCCAACS,
AGAGCTCS,,
GTCGCTTS5.

P5(0) =[], N5(0) = [|(empty array)
P5(1) = [2], N5(1) = [2]
P5(2) = [3,4], N5(2) = [1, 3]
P5(3) =[], N5(3) =[]
Ps(4) =1, Ns(4) =]

For h = 0, 3, 4: nothing
For h = 1:
rank(G,2) = 0(sequence = 2)
For h = 2:
rank(G, 3) = 1(sequence =
rank(T, 4) = 2(sequence =

GCCAACS,
GAGCTCS,
TCGCTTS3.

N = O

WO DU WN = O

W =Oo

Bg (0)

§5QQ

o)
o
~

=
N2

oo}
2. QrxQ
N

QQANQQN®

B (3)

o)
2 ax
=

Q- QN

Associated Suffixes
$1
82
83

Associated Suffixes
AACS$,

ACS$,
AGCTCS$y

Associated Suffixes
C$q

C$o

CAACS,
CCAACS,
CGCTTS3
CTC$o

CTT$s

Associated Suffixes
GAGCTCS,
GCCAACS$;
GCTC$2
GCTT$s

Associated Suffixes
T$3

TC$o
TCGCTT$3
TT$3

Looking in detail at iteration 6

0
1
2

[

=] DU WO

-

B5(0)
C

C
T

Bs(1)
C

W
2 on
N

QQHd0Q>

B5(3)

Qs

o]
ot
~
&

QaQHX

Associated Suffixes
$1
B2
$3

Associated Suffixes
AACS,

AC$q

AGCTCS$2

Associated Suffixes
C$q

C$y

CAACS,
CCAAC$;
CGCTTS$3
CTC$o

CTT$3

Associated Suffixes
GCTCS$2
GCTT$3

Associated Suffixes
T$3

TC$o

TT$3

TGCCAACS,
AGAGCTCS,,
GTCGCTTS5.

P5(0) =[], N5(0) = [|(empty array)
P5(1) = [2], N5(1) = [2]
P5(2) = [3,4], N5(2) = [1, 3]
P5(3) =[], N5(3) =[]
Ps(4) =1, Ns(4) =]

¥

For h = 0, 3, 4: nothing
For h = 1:
rank(G,2) = 0(sequence = 2)
For h = 2:
rank(G, 3) = 1(sequence =
rank(T, 4) = 2(sequence =

TGCCAACS 1,
AGAGCTCS,
GTCGCTTS;.

Pg(0) 0)
Pg(1) . Ng(1)
Pg(2) =[], N6 (2)
Pg(3) = [0,1] and Ng(3) = [2,
Pg(4) = [2] and Ng(4) = [3]

N = O

WO DU WN = O

W =Oo

Bg (0)

5QQ

o)
o
~

[
N2

o oo}
2. QQNQAQNRS Qx»Q
& r

QAQx-H>

Bg (4)
T

c
G
C

Associated Suffixes
$1
82
83

Associated Suffixes
AACS$,

ACS$,
AGCTCS$y

Associated Suffixes
C$q

C$o

CAACS,
CCAACS$,
CGCTTS3
CTC$o

CTT$s

Associated Suffixes
GAGCTCS,
GCCAAC$;
GCTC$2
GCTT$s

Associated Suffixes
T$3

TC$o
TCGCTT$3
TT$3

Position of GCCAACS; in G segment = # of G before CC AACS$, in partial BWT = # of G in $-segment +# of G in

A-segment +# of G before CCAACS; in C-segment

Two versions of our algorithm: BCR vs.

BCRext

BCR BCRext
CPU time O(ksort(m)) O(km)

RAM usage (bits) | O((m + o2)log(mk)) | O(c*log(mk))
1/O (bits) O(mk?log(s)) O(mk3log(o))
(partial BWT) (partial BWT)
O(mklog(o)) O(mk?log(c))

(sequence slices) (sequences)
O(mklog(mk))

(P — array)
O(mklog(m))

(N — array)

BWT of a collection Experiments

Performance on human DNA sequence data

Dataset size Program Wallclock time CPU Max RAM
(millions of 100-mers) | Program | (us per input base) | efficiency (%) (Gbyte)
85 bwte 7.99 99 4.00

rlcsa 2.44 99 13.40

BCR 1.01 83 1.10
BCRext 4.75 27 negligible

1000 BCR 5.74 19 13.00
BCRext 5.89 21 negligible

Further works

@ Able to compute BWT of 1 billion 100-mers in under 24 hours

@ Ongoing work:
e Further optimizations to construction, parallelization
e Software library for construction/querying of BWT of large string
collections
e Algorithm can be adapted to allow sets of strings to be added/removed
from collection
o Applications of BWT of string collection to bioinformatics

	Introduction
	Burrows-Wheeler Transform
	How does BWT work?

	BWT of a collection
	Introduction
	Idea
	Experiments
	Further works

