
Simple Real-Time Constant-Space String Matching

Dany Breslauer, Roberto Grossi and Filippo Mignosi



Real-time string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n] 



Real-time string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n] 

O(1) worst-case time to 
answer after reading the 
text symbol



Real-time string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n] 

O(1) worst-case time to 
answer after reading the 
text symbolDifferent from real-time 

streaming s.m., where X and T 

cannot be entirely stored!



Constant-space string matching
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required by X and T
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Some related work
Galil '81: real-time string matching

Galil, Seiferas '83: constant space

Karp, Rabin '87: randomized constant space real-time

Crochemore, Perrin '91: constant space

Gasieniec, Plandowski, Rytter '95: constant space

Gasienec, Kolpakov '04: real-time + sublinear space (extends GPR'95)

        more papers [Crochemore, Rytter '91,'95] [Crochemore '92] [...]

Porat, Porat '09: randomized streaming, O(log m) space, no real-time

Breslauer, Galil '10: randomized real-time streaming, O(log m) space
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Real-time streaming string matching
O(log m) memory words (X and T cannot be kept)
O(1) worst-case time to answer after each text symbol

Not to be confused with
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Simple version of the Crochemore-Perrin (CP) algorithm

Consider a non-empty prefix-suffix factorization X  = u v

The local period is the shortest z such that
          z is suffix of u or vice versa
            and
          z is a prefix of v or vice versa 

μ(u,v) ≡ length of the local period

Critical factorization ifμ(u,v) = π(X)  [len. of the period of X]
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aaab aaabba ba

Example:

a a

Critical Factorization Theorem (Cesari and Vincent):

Among π(X) - 1 consecutive factorizations: 
at least one is a critical factorization

There always exists a critical factorization 
X = u v such that |u| < π(X) 
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Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan 
with O(1) comparisons from the back fill

X = ab aaaba  critical factorization

abaaaba abaaaba

abaabaaabaaabaabaaabaa

(and charge the O(|z|+1) cost to the symbols in z in real time)
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By contradiction, suppose there is a valid shift that is shorter...

... recall that |u| < π(X), the length of the period
u v

u v

π(X)

Contradiction: a local period at u v that is shorter than π(X)!!

It follows from the Crochemore-Perrin result [other case
                     not displayed: periodicity rules out occurrences]π(X)
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Interleave O(1) comparisons from the forward scan 
with O(1) comparisons from the back fill

Let z be the matched prefix of v, where X = u v is c.f.:

      if z ≠ v ⇒ shift by |z|+1 positions and reset z = empty
      if z = v ⇒ shift by π(X) positions and update z

Output an occurrence when the forward scan 
terminates (and interrupt the back fill if needed)

Total cost is O(1) worst-case per symbol: 
the algorithm is real-time
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Real-Time Variation of CP

X = (uv) w is a critical factorization, and 

u v w

v'u v
X

Recall we may leave a "hole" to the left of w:
this hole has to be covered by X'...



Real-Time Variation of CP

X = (uv) w is a critical factorization, and 
X' = u (vv') is a critical factorization for a prefix X' of X
with |u| ≤ |vv'|

u v w

v'u v

Note that X' is entirely matched since |u| ≤ |vv'|

X'

X



Real-Time Variation of the CP Algorithm

Interleave O(1) steps of two instances of the Basic 
Real-Time Algorithms, one looking for X and the 
other for X', aligned with |X|-|X'| positions apart.



Real-Time Variation of the CP Algorithm

Interleave O(1) steps of two instances of the Basic 
Real-Time Algorithms, one looking for X and the 
other for X', aligned with |X|-|X'| positions apart.

Simple pseudocode

Total cost is O(1) worst-case per symbol: 
the algorithm is real-time and reports 
correctly all the occurrences
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Some more definitions...

A factorization u v is left-external if |u| ≤ μ(u,v) for non-empty u, v

Define L(X) = { u v : X = u v is left-external }

u      v

L(X) non-empty because of the 
Critical Factorization Theorem
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Pattern preprocessing

Let X = u1 w be the first critical factorization in L(X) 

It is |u| ≤ μ(u, v) ≤μ(u, vv') =μ(u, vw) ≤ |vv'|

Extend u1 by periodicityμ(u,vw) < |vw|: set X' = u (vv')
          where v' prefix of w

HINT: use CP preprocessing on the prefixes of X
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