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SUMMARY

— | Formal power series and languages

~ | Conditions of regularity for languages described by formal
series (rational + Hadamard quotient)

| Hadamard quotient of rational series and two-way weighted
automata



FORMAL POWER SERIES

— Formal power series ¢ € R{(>*))
P = EwEZ* gO(Cd)CU
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FORMAL POWER SERIES

" Formal power series ¢ € R{{X*))
Ol ngz* p(w)w
 Polynomial ¢ € R(X*) iff
supp(p) = {w € E*|p(w) # 0} is finite
- sum: (@ + ¢)(w) = ¢(w) + P (w)
- Cauchy product: (¢ - ¥)(w) =, yex» 9(2)Y(y)

TY=w
—if () =0, ¢* =2 is0¢"

~ Rational series: R™%((3*)) = (R<E*>)+"’*
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FORMAL POWER SERIES

| Recognizable series p € R™((3*))

iff admits a linear representation:
c Rle

A K
(7, 1, M)

v

plo) € R™=

such that forall w =000, € X*
p(w) =mp(w)n” = (L, ploi)n

1 (Schiitzenberger, 61): R™'((3*)) = R"™°((¥*))



PROOF

| Matrix representation of a 1pfa:

A= (m,pu,n)

initial final

distribution stochastic states

transition
matrix

— A 1s the linear representation of
pa 2t — |0,1]

where p4(w) is the probability of accepting the word w



LANGUAGES AND FORMAL SERIES

-~ | Language defined by ¢ with cut point A
Loy = 1w € X |p(w) > Aj

isolated by ¢ 1if

p(w) — Al >0



LANGUAGES AND FORMAL SERIES

~ | (Rabin 63) Ipta’s with 1solated cut point recognize the class
of regular languages

| Languages recognized by MO-1qgfa’s, MM-Iqta’s, I1qfc’s
with 1solated cut point are regular

(for a survey, see Bertoni, Mereghetti, Palano, DI.T2003)



THEOREM

-~ If ¢ describes the behaviour of a 1pfa (1qfa): Im () C |0, 1]

1 € R({X*)) 1s a bounded series 1f

SUpP,,ex+ |P(w)] < 00

— (7, u,n) is a bounded linear representation if

Supex- [[pa(w)]|2 < o0



THEOREM

— Theorem: if (7, 1, 1) is a reduced (=of minimal dimension)
linear representation of ¢, then

(7, 4,m) 1s bounded < @ is bounded



PROOF

(777 % 77) bounded = ¢ bounded

definition
of linear .Schwa}"z
representation inequality

p(w)| = [mp(w)n’ | < |lrpw)]2]lnll2 < oo

v

bounded by
hypotesis



PROOF

(777 1 77) bounded < ¢ bounded

1 (Schiitzenberger, 61) If (7, u, n) 1s a reduced linear

representation of (o, then there exist polynomials

Pla"'apnv Q17°°'7Qn

such that
u(w)ij = p(Piwq;)

where, for P € R(X*), g&(P) — Zwex* gp(w)P(w)



PROOF

(7T, L, 77) bounded < ¢ bounded

— Z%zl djmvjm By = Ze 1 CielUqy
N(W)z’j e SO(PMQJ) — Z CiedijO(uwwvjm)
1 <2< ay,
1 <m < B



PROOF

(7T, L, 77) bounded < ¢ bounded
— Z%zl djmvjm By = Ze 1 CielUqy
p(w)ij = p(Piwl;) = CitjmP(UiewVim)

W)l < Y | cielldml|o(wiowvjm)|

1 < €< ay, ‘ bounded by
1 <m < B hypotesis



THEOREM

| (Bertoni, Mereghetti, Palano, DL.T2003)
(7, i4,17) bounded linear representation of ¢, and \

1solated for ¢

L, 1s regular




THEOREM

| (Bertoni, Mereghetti, Palano, DL.T2003)
(7, i4,17) bounded linear representation of ¢, and \

1solated for ¢

L, 1s regular

~ Theorem: ¢ € R™"((>*)) bounded and A 1solated for ¢

¥

L, »1s regular




HADAMARD QUOTIENT
OF RATIONAL
POWER SERIES




HADAMARD OPERATIONS

-~ Hadamard product: (¢ ® 9¥)(w) = p(w) - Y (w)

\-/v

- Hadamard quotient: %( by — E
() =%

when supp

R ((¥*)) 1s closed under Hadamard product but not under
Hadamard quotient



THEOREM

— | Theorem: ¢ = % with @, € R ((X*)). If

(I) £ 1s bounded
(I1) % 1s bounded
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THEOREM

— | Theorem: ¢ = % with @, € R ((X*)). If

(I) £ 1s bounded
(I1) % 1s bounded
(I1T) 0 1s 1solated for v

then A 1solated for § = L¢ ) regular.

| Proof:

L = {w e "

o) 5 A = {w e B pwilw) ~ M) > 0)

we only have to show that 0 is isolated for ¢(w)¢(w) — A* (w)



PROOF I

— We show that 0 is isolated for p(w)¥(w) — Ap*(w)




PROOF

~ 1 We show that 0 is isolated for ¢(w)y(w) — Ap?(w)

-~ | By hypothesis, \ 1s 1solated for £, so 40 > 0 such that either

p(w) p(w) 2
By Z A+ or pgy SA—0




PROOF

— We show that 0 is isolated for p(w)y(w) — A\p*(w)

-~ | By hypothesis, \ 1s 1solated for £, so 40 > 0 such that either

p(w) p(w) 2
By ZAT0 or gy SA—d

A >N+ = pw)p(w) — M (w) z W)

= (W)Y (w) — Mp?(w) > o¢

> e >0



PROOF

— We show that 0 is isolated for p(w)y(w) — A\p*(w)

-~ | By hypothesis, \ 1s 1solated for £, so 40 > 0 such that either

p(w) p(w) 2
By ZAT0 or gy SA—d

A >N+ = pw)p(w) — M (w) z W)

= (W)Y (w) — Mp?(w) > o¢

— | By a symmetric reasoning

L <A=6 = p(wY(w) — AP (w) < —de

> e >0

so L¢ y 1s regular
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THEOREM

| Theorem: if one of conditions (I), (II), (IIT) 1s dropped, even

if )\ 1s1solated tor £, L¢ 5 might not be context free.

—{ Lemma: let ¢(a™) = n* sin? (mnf), where 6 = 1+2\@,

2

. . 2
there exists a rational % <\ 4% such that

— )\ 1s 1solated for ¢

— L, x 1s not context free

— Proot of the Theorem: find 3 series which satisty only 2 of
the conditions and detine the language L, »



PROOF

Lo ={a" | p(a™) = n?sin®(mnd) > A}

~ Dropping condition (I): ¢ not bounded

n a” n” sin® (7n6
§1(a") = iigan; = 1( ) A1 = A
~ Dropping condition (I): 9 not bounded

_ pa(a™) _ n®sin?(mnh)+1 A1
52(0’”) - wz(a”)  n2sin?(wnd)+2 A2

-~ Dropping condition (I1I): 0 not 1solated for v

ny __ (a™) 27 ™[n?sin?(mnd)+1] _
Sa(a”) = Zzi(an) — 27 7[n2sin?(7nd)+2] Az = Az




PROOF

Lo ={a" | p(a™) = n?sin®(mnd) > A}

~ Dropping condition (I): ¢ not bounded

n a” n” sin® (7n6
§1(a") = iigan; = 1( ) A1 = A
~ Dropping condition (I): 9 not bounded

_ pa(a™) _ n®sin?(mnh)+1 A1
52(0’”) - wz(a”)  n2sin?(wnd)+2 A2

-~ Dropping condition (I1I): 0 not 1solated for v

ny __ (a™) 27 ™[n?sin?(mnd)+1] _
Sa(a”) = Zzi(an) — 27 7[n2sin?(7nd)+2] Az = Az

L§1,>\1 — L€2,>\2 — L€3,>\3 — L<P,>\



HADAMARD QUOTIENT
RATIONAL POWER SERIES
ND TWO-WAY AUTOMATA
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TWO WAY AUTOMATA

ol QPfa: = :( Q7 T, {A_ (J>7 A+(0)}UEEU{#,$}7 77)
‘ ‘ left and right

endmarkers

[ Input: #w$

fog§

\_ accepts according to 1
HALT



TWO WAY AUTOMATA

| 2pfa: = :( Q,, {A_ (CT), A+(U)}JEEU{#,$}7 77)
‘ ‘ left and right

{1, -5 am}

endmarkers

— Input: #w$
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is the probability of accepting the input word



TWO WAY AUTOMATA

| 2pfa: = :( Q,, {A_ (O), A+(U)}JEZU{#,$}7 77)
‘ ‘ left and right

{1, -5 am}

endmarkers

— Input: #w$

fog§

\_ accepts according to 1
HALT

— Event: p= : X* — [0, 1]

is the probability of accepting the input word
— 1 A 2pfta 1s transient if, for any input word, 1t halts with

probability 1



THEOREM

~ | (Anselmo, Bertoni, 93): Given a transient 2pta
= :( Qv T, {A_ (0)7 AT (U)}UEEU{#,$}7 77)

the formal power series describing p= 1s the Hadamard

quotient of two rational power series.
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THEOREM

~ | (Anselmo, Bertoni, 93): Given a transient 2pta
= :( Qv T, {A_ (0)7 AT (U)}UEEU{#,$}7 77)

the formal power series describing p= 1s the Hadamard

quotient of two rational power series.

~ Theorem: if all matrices A™ (o) are invertible, we give an
explicit representation of pz in terms of Hadamard quotient.

— 1 Proot: without loss of generality

7 =(1,0,...,0) n=(0,...,0,1)
d1 dm
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~ For each word w =01 ---0,, by letting # = 0y and $ = ¢, 4
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PROOF

~ For each word w =01 ---0,, by letting # = 0y and $ = ¢, 4
we define

R ) 0 -
A7 0 A
: : AT = AT (0;)
0 A, . g '
M(w) = -
At 0 Ay = A (0y)
Ap 0 AT
0 o 0 0 |




PROOF

— For each word w = 01°°°*0p, by letting +# = 0y and § = On+1

we define

# 01 On,
plilgdd o T
A7 0 A
0 A
Ana
0 0

$
EEy

HALT

o1 -




PROOF

~ For each word w =01 ---0,, by letting # = 0y and $ = ¢, 4

we define 4 o S
Tl o M1 g
A7 0 A
LR Af = A*(o)
M(w) = 2 ' '
s A;L— 0 A;:A_(O-z)
Ay 00 AT,
0 0o 0 0
' =(e1,0,...,0,0,0) e1 = (1,0,...,0)
L] S |
+# 01 0, § HALT
M /i
T}/ — (0707 * e 707076m)T Em = (07 7071>



PROOF

— For each word w = 01°°°*0p, by letting +# = 0y and § = On+1

we define

# 01 On $ HALT
L B e B B B
AT 0 AT
R
AT 0
Ap 0 AT
0 0 0 0
7T/_(61,O,. .,0,0,0)
W - W | - -
# 01 0, § HALT
i iriri
77/ — (0707 '707076m)T

— 7 (M (w))tn’ 1s the probability of accepting w 1n t steps



PROOF












PROOF

p=(w) = ) w'(M(w))'y =7’ (Z(M(w))t) i

t=0 t=0
—= transient — 7'('/ (I = M(w))_ln/
M(w) e R**¢ — (I — M(w))l_’fi

(cof (I — M(w)))u1
det(I — M (w))

— 1 Idea: calculate pz as the quotient of determinants of fixed
dimension matrices



TRIDIAGONAL BLOCK MATRICES

— | (Molinar1 08) Given the tridiagonal block matrix

Ay B 0
M —— Cl - det Bz 7é 0
o Bn—l
0 Cn—l An




TRIDIAGONAL BLOCK MATRICES

— | (Molinar1 08) Given the tridiagonal block matrix
- A _

M =

| Its transfer matrix 1s

C1

B

T — [ _An _On—l ] [ _Bf,;_llAn—l

i 0

L,

0
e Bn—l
Cn—l An
—B,1Cnz |
0

det Bz 7é 0

B Ay et

0



TRIDIAGONAL BLOCK MATRICES

— | (Molinar1 08) Given the tridiagonal block matrix

Ay B 0
o Bn—l
L 0 Cn—l An u

| Its transfer matrix 1s

T — _An _On—l _Bf,;_llAn—l _Bf;_llcn—2 o _Bl_lAl _Bl_l
Iy 0 I, 0 I, 0

| Its determinant 1s

det M = (_1)nm det[Tll] det[Bl s Bn—l]



TRIDIAGONAL BLOCK MATRICES

— | (Molinar1 08) Given the tridiagonal block matrix with

1
2 Co
o Bn—l
Cn—l An
—-B;7 A,
I,

corners A By
C
M, = :
_ Zy
— 1 Its transfer matrix 1s
—BglAn —BglC’n_l
ro] Bt B )
— | Its determinant 1s
det M, = (=)

(—=1)

— det|T" — 21| det[By - - - By

det Bz # 0



pe(w) =

(cof (I — M(w)))u1

det(I — M(w))

PROOF

(=1)™ det(T11(w)) - det(Ag -

v

transfer matrix of I — M (w)

0 0
—Ai'_
—AF 0
—A- . I AY
0 0 I,

+
”An—l—l

)



PROOF

(cof (I — M(w)))y, (—=1)"det(Yir(w) — Zp,) - det(Ag -~ Ay)

—\W) = =
p=(w) det(I — M(w)) (—1)™ det(T11(w)) - det(ABL it A;;Ll)
I, —-Af 0 0
e M(w) _ 0 _AQ_ . -
—AF 0
Zm o o0 1.




p=(w)

PROOF

(_1)m det(Yn(w) — Zm) ' det(A(—l)_ L A;I;

(—=1)™ det(T11 (w)) - det(Ag - - - A;[H)



p=(w)

PROOF

(_1)m det(Yn(w) — Zm) ' det(A(—l)_ L A;IL_

(—=1)™ det(T11 (w)) - det(Ag - - - A;[H)

det(Y11(w) — Zp,)
Z p=(w)w = Z det(111(w)) .

wEI* wE*



PROOF

(_1)m det(Yn(w) — Zm) . det(A(—l)_ L A;I; 1)

=) = T ) m det(Twa (w)) - det (A7 - AT ,,)

Z pe(w)w = Z det(Y11 (w) — )Zm)w

wen- wese  det(Tu(w)

— R™"((3*})) 1s closed under sum and Hadamard product



OPEN PROBLEMS

| Study of the behaviour of 2gta in relation to formal power
series.

— | Study of other classes of languages defined by formal power
series and 1solated cut point in relation to the Chomsky-
Schiitzenberger classification.
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