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SUMMARY

 Formal power series and languages

 Conditions of regularity for languages described by formal 
series (rational + Hadamard quotient)

 Hadamard quotient of rational series and two-way weighted 
automata
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 Matrix representation of a 1pfa:

initial
distribution stochastic

transition
matrix

final
states

      is the linear representation of

  where             is the probability of accepting the word
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LANGUAGES AND FORMAL SERIES

 (Rabin 63) 1pfa’s with isolated cut point recognize the class
              of regular languages

 Languages recognized by MO-1qfa’s, MM-1qfa’s, 1qfc’s 
with isolated cut point are regular 
(for a survey, see Bertoni, Mereghetti, Palano, DLT2003)



THEOREM

 If     describes the behaviour of a 1pfa (1qfa):

                         is a bounded series if

                is a bounded linear representation if



THEOREM

 Theorem: if               is a reduced (=of minimal dimension)
                   linear representation of    , then

                           is bounded           is bounded



PROOF

                               bounded          bounded

Schwarz
inequality

definition
of linear

representation

bounded by
hypotesis



PROOF

                               bounded          bounded

 (Schützenberger, 61) If               is a reduced linear 
representation of    , then there exist polynomials

such that

where, for                    , 



PROOF

                               bounded          bounded



PROOF

                               bounded          bounded

bounded by
hypotesis



THEOREM

 (Bertoni, Mereghetti, Palano, DLT2003)
               bounded linear representation of    , and            
isolated for

                                             is regular



THEOREM

 (Bertoni, Mereghetti, Palano, DLT2003)
               bounded linear representation of    , and            
isolated for

                                             is regular

 Theorem:                           bounded and    isolated for

                                             is regular



HADAMARD QUOTIENT
OF RATIONAL
POWER SERIES
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 Hadamard product:

 Hadamard quotient:

                                  when

                    is closed under Hadamard product but not under 
Hadamard quotient
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 By hypothesis,     is isolated for    , so              such that either

                                               or

 By a symmetric reasoning

so          is regular
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 Theorem: if one of conditions (I), (II), (III) is dropped, even 

if     is isolated for    ,          might not be context free.

 Lemma: let                                       , where                  ,

               there exists a rational                          such that

     is isolated for

          is not context free

 Proof of the Theorem: find 3 series which satisfy only 2 of
     the conditions and define the language



PROOF

Dropping condition (I):      not bounded

Dropping condition (II):      not bounded

Dropping condition (III): 0 not isolated for



PROOF

Dropping condition (I):      not bounded

Dropping condition (II):      not bounded

Dropping condition (III): 0 not isolated for



HADAMARD QUOTIENT
OF RATIONAL POWER SERIES
AND TWO-WAY AUTOMATA



TWO WAY AUTOMATA

 2pfa:



TWO WAY AUTOMATA

 2pfa:



TWO WAY AUTOMATA

 2pfa:

left and right
endmarkers



TWO WAY AUTOMATA

 2pfa:

left and right
endmarkers

 Input:



TWO WAY AUTOMATA

 2pfa:

left and right
endmarkers

 Input:



TWO WAY AUTOMATA

 2pfa:

left and right
endmarkers

 Input:



TWO WAY AUTOMATA

 2pfa:

left and right
endmarkers

HALT

 Input:



TWO WAY AUTOMATA

 2pfa:

left and right
endmarkers

HALT

accepts according to η

 Input:



TWO WAY AUTOMATA

 2pfa:

left and right
endmarkers

HALT

accepts according to η

 Input:

 Event:

            is the probability of accepting the input word



TWO WAY AUTOMATA

 2pfa:

left and right
endmarkers

HALT

accepts according to η

 Input:

 Event:

            is the probability of accepting the input word
 A 2pfa is transient if, for any input word, it halts with
probability 1
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 (Anselmo, Bertoni, 93): Given a transient 2pfa

the formal power series describing       is the Hadamard 
quotient of two rational power series.

 Theorem: if all matrices             are invertible, we give an
explicit representation of       in terms of Hadamard quotient.

 Proof: without loss of generality
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 For each word                        , by letting              and              
we define HALT

HALT

                        is the probability of accepting     in t steps
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transient

 Idea: calculate      as the quotient of determinants of fixed
dimension matrices
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 (Molinari 08) Given the tridiagonal block matrix with 
corners

 Its transfer matrix is

 Its determinant is
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                    is closed under sum and Hadamard product



OPEN PROBLEMS

 Study of the behaviour of 2qfa in relation to formal power 
series.

 Study of other classes of languages defined by formal power 
series and isolated cut point in relation to the Chomsky-
Schützenberger classification.
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