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Abstract. In this paper we determine some limit distributions of pat-
tern statistics in rational stochastic models, defined by means of nonde-
terministic weighted finite automata. We present a general approach to
analyse these statistics in rational models having an arbitrary number
of connected components. We explicitly establish the limit distributions
in the most significant cases; these ones are characterized by a family of
unimodal density functions defined by polynomials over adjacent inter-
vals.
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1 Introduction

This work presents some results on the limit distribution of pattern statistics.
The major problem in this context is to estimate the frequency of pattern oc-
currences in a random text. This is a classical problem that has applications in
several research areas of computer science and biology: for instance, it is consid-
ered in connection with the search of motifs in DNA sequences [6, 14] while the
earlier motivations are related to code synchronization [10] and approximated
pattern-matching [12, 18, 5]. In the usual setting, established in the seminal pa-
per [11] and developed in many subsequent works (see for instance [15, 13, 3]),
one considers a finite alphabet Σ, a set of patterns R ⊆ Σ∗, a probabilistic
source P generating words at random in Σ∗, and studies the number Xn of
occurrences of elements of R in a word of length n generated by P . Typical
goals are the asymptotic evaluation of the moments of Xn, its limit distribution
(also in the local sense) and the corresponding large deviations. These results
depend in particular on the stochastic model P , which is usually assumed to be
a Bernoulli or a Markovian model.

A rather general result is presented in [13], where Gaussian limit distributions
are obtained, for any regular set of patterns R and any Markovian source P ,
under a primitivity hypothesis on the associated stochastic matrix. This result
is extended in [2] to the so-called rational stochastic model, where the text is
generated at random according to a probability distribution defined by means
of a rational formal series in noncommutative variables. In particular cases, this
is simply the uniform distribution over the set of words of given length in an
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arbitrary regular language. For this reason, results for this model are also related
to the analysis of additive functions over strings [9].

The rational stochastic model properly extends the Markovian models in the
following sense: the frequency problem of regular patterns in a text generated in
the Markovian model (as studied in [13]) is a special case of the frequency prob-
lem of a single symbol in a text over a binary alphabet generated in the rational
stochastic model; it is also known that the two models are not equivalent [2]. We
recall that extensions of the Markovian models have already been considered in
the literature [3]. Furthermore, finding results under more general probabilistic
assumptions is of interest since, for some applications, the Markovian models
seem to be too restrictive.

Also in the rational stochastic models, Gaussian limit distributions are ob-
tained under a primitive hypothesis, i.e. when the matrix associated with the
rational formal series (counting the transitions between states) is primitive [2].
A complete study of the limit distributions is given in [4] in the bicomponent
models, that is when the previous matrix has two primitive components.

In this paper we present a general approach to the analysis of multicompo-
nent rational models, explicitly establishing the limit distribution in the most
significant cases. The paper is organized as follows. In Section 2 we give the
definition and the main properties of rational models. In Section 3 we show how
this model can be decomposed and we introduce the notions of main chain and
simple model. Under a special assumption on the main chain, in Section 4 we
determine the limit distributions of pattern statistics for simple models. They
are characterized by an interesting family of unimodal density functions defined
by polynomials over adjacent intervals. Finally in Section 5 we extend the results
to all simple models and also provide a natural method to determine the limit
distribution in the general case.

2 Rational Models for Pattern Statistics

In this section we recall some basic notions on rational formal series [16, 1] and
the corresponding stochastic models to study the number of symbol occurrences
in words chosen at random.

Let R+ be the semiring of all nonnegative real numbers and consider a finite
alphabet Σ. A formal series over Σ with coefficients in R+ is a function r :
Σ∗ −→ R+, usually represented in the form r =

∑
ω∈Σ∗(r, ω) · ω, where (r, ω)

denotes the value of r at ω ∈ Σ∗. Moreover, r is called rational if it admits a
linear representation, that is a triple (ξ, µ, η) where, for some integer m > 0, ξ
and η are (column) vectors in R

m
+ and µ : Σ∗ −→ R

m×m
+ is a monoid morphism,

such that (r, ω) = ξTµ(ω) η holds for each ω ∈ Σ∗. Observe that considering
such a triple (ξ, µ, η) is equivalent to defining a (weighted) nondeterministic
automaton, where the state set is given by {1, 2, . . . ,m} and the transitions, the
initial and the final states are assigned weights in R+ by µ, ξ and η, respectively.
To avoid redundancy it is convenient to assume that (ξ, µ, η) is trim (meaning
that all indices are used to define the series), i.e. for every index i there are two
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indices p, q and two words x, y ∈ Σ∗ such that ξpµ(x)pi �= 0 and µ(y)iqηq �= 0.
We say that (ξ, µ, η) is primitive if M =

∑
σ∈Σ µ(σ) is a primitive matrix, that

is for some n ∈ N all entries of Mn are strictly positive. We also recall that
a matrix M ∈ R

m×m
+ is called irreducible if for every pair of indices p, q there

exists n ∈ N such that Mn
pq > 0.

Any formal series can define a stochastic model for studying the frequency of
occurrences of a letter in a word of given length. Consider the binary alphabet
{a, b} and, for any n ∈ N, let {a, b}n denote the set of all words of length n
in {a, b}∗. Consider a formal series r : {a, b}∗ −→ R+ and let n be a positive
integer such that (r, x) �= 0 for some x ∈ {a, b}n. A probability measure over
{a, b}n can be defined by setting

Pr{ω} =
(r, ω)∑

x∈{a,b}n(r, x)
(ω ∈ {a, b}n). (1)

In particular, if r is the characteristic series χL of a language L ⊆ {a, b}∗, then
Pr is just the uniform probability function over L ∩ {a, b}n. Then, we define
the random variable (r.v. for short) Yn : {a, b}n → {0, 1, . . . , n} such that
Yn(ω) = |ω|a for every ω ∈ {a, b}n. For every j = 0, 1, . . . , n, we have

Pr{Yn = j} =

∑
|ω|=n,|ω|a=j(r, ω)∑

x∈{a,b}n(r, x)
.

If r = χL for some L ⊆ {a, b}∗, then Yn represents the number of occurrences
of a in a word chosen at random in L ∩ {a, b}n under uniform distribution.

When r is rational, the probability space given by (1) defines a stochastic
model we call rational stochastic model. It is a generalization of the Markovian
models in the sense that the r.v.’s Yn for rational r represent, in special cases, the
number of occurrences of patterns from an arbitrary regular language in words
generated at random by Markovian processes [2–Section 2.1].

Let (ξ, µ, η) be a linear representation for the rational series r and set A =
µ(a), B = µ(b), M = A+B. To study the behaviour of the random variables Yn
and in particular their limit distribution, it is useful to introduce the sequence
of functions {rn(z)}n in one complex variable z defined by

rn(z) =
∑

x∈{a,b}n

(r, x) · ez|x|a = ξT (Aez + B)nη.

Indeed, it is immediate to see that the characteristic function of Yn satisfies the
relation

ΨYn(t) = E(eitYn) =
rn(it)
rn(0)

(2)

for t ∈ R. We recall that a sequence of random variables Xn converges in dis-
tribution to a random variable X if and only if the sequence of characteristic
functions ΨXn

(t) pointwise converges to ΨX(t) [7].
Now consider the generating function of {rn(z)}n. Note that

∑∞
n=0 rn(z)w

n

= ξTH(z, w)η, where H(z, w) is the matrix function defined by

H(z, w) =
∞∑

n=0

(Aez + B)nwn = (I − w(Aez + B))−1 . (3)
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If M is irreducible, by the Perron–Frobenius Theorem (see [17–Theorem 1.5])
it has a nonnegative real eigenvalue λ of maximum modulus. Moreover, if M is
primitive, then all other eigenvalues have modulus strictly lower than λ. If further
A �= 0 �= B, then there are two constants β ∈ (0, 1), γ > 0, both depending on
the matrix M and its eigenvectors (see [2] for details), such that, as n tends to
infinity, the following relations hold:

E(Yn) = βn+O(1) , Var(Yn) = γn+O(1) . (4)

For sake of brevity we say that β and γ are the mean constant and the variance
constant of the primitive matrix M, respectively. Under the same hypothesis,
one can also prove [2] that the distribution of Yn−βn√

γn converges to the normal
distribution of mean value 0 and variance 1.

3 Decomposition of a Rational Model

Up to now, the properties of Yn have been studied only in the primitive models
[2] and in the case of two primitive components [4]. Here we present a general
approach to deal with an arbitrary rational model. To this aim, we describe the
construction of the reduced graph of the strongly connected components of the
corresponding linear representation. This is a usual approach in the analysis of
counting problems on regular languages (see for instance [8] for an application
concerning trace languages).

Let (ξ, µ, η) be a linear representation over the alphabet {a, b} with coeffi-
cients in R+. As in the previous section, set A = µ(a), B = µ(b), M = A+B and
consider the directed graph defined by M, where the set of nodes is {1, 2, . . . ,m}
and (p, q) is an (oriented) edge if and only if Mpq �= 0. Then, let C1, C2, . . . , Cs

be the strongly connected components of the graph and define Ci initial (resp.
final) if ξp �= 0 (resp. ηp �= 0) for some p ∈ Ci. The reduced graph of (ξ, µ, η) is
then defined as the directed acyclic graph G where C1, C2, . . . , Cs are the ver-
tices and any pair (Ci, Cj) is an edge if and only if i �= j and Mpq �= 0 for some
p ∈ Ci and some q ∈ Cj .

Up to a permutation of indices, the matrix M can be represented as a trian-
gular block matrix of the form

M =



M1 M12 M13 · · · M1s

0 M2 M23 · · · M2s

· · ·
0 0 0 · · · Ms




where each Mi corresponds to the strongly connected component Ci and every
Mij corresponds to the transitions from vertices of Ci to vertices of Cj in the
original graph of M. Also A, B, ξ and η admit similar decompositions: we define
the matrices Ai, Aij , Bi, Bij and the vectors ξi, ηi in the corresponding way and
we say that the component Ci degenerates if Ai = 0 or Bi = 0. Since each Mi is
either irreducible or null, by the Perron–Frobenius Theorem it has a nonnegative
real eigenvalue λi of maximum modulus. We call main eigenvalue of M the value



684 M. Goldwurm and V. Lonati

λ = max{λi | i = 1, 2, . . . , s} and we say that Ci is a dominant component if
λi = λ. Observe that λi = 0 only if Ci reduces to a loopless single node and
hence from now on we assume λ > 0. If further Mi is primitive, we say that Ci

is a primitive component.
The block decomposition of M also induces a decomposition of the matrix

H(z, w) defined in (3). More precisely, the blocks under the diagonal are all
null, while the upper triangular part is composed by a family of matrices, say
Hij(z, w), 1 ≤ i ≤ j ≤ s. Note that the bivariate generating function ξTH(z, w)η,
which is the main tool of our investigation, is now given by

ξTH(z, w)η =
∞∑

n=0

ξT (Aez + B)nη · wn =
∑

1≤i≤j≤s

ξT
i Hij(z, w)ηj . (5)

SettingMij(z) = Aije
z+Bij and reasoning by induction on j− i, one can prove

that, for each 1 ≤ j ≤ s, the following equality holds

Hjj(z, w) = (I − w(Aje
z +Bj))−1 =

Adj(I − w(Aje
z +Bj))

det(I − w(Ajez +Bj))
, (6)

while for each 1 ≤ i ≤ j ≤ s we have

Hij(z, w) =
∑

∗
Hi1i1(z, w)Mi1i2(z)Hi2i2(z, w) · · ·Mi�−1i�(z)Hi�i�(z, w) · w�−1, (7)

where the sum (∗) is extended over all sequences of integers (i1, i2, . . . , i�), * ≥ 2
such that i1 = i, it < it+1 for each t = 1, . . . , *− 1 and i� = j.

The previous equation suggests us to introduce the notion of chain of the
reduced graph G associated with (ξ, µ, η). A chain is a simple path in G, i.e.
any sequence of distinct components κ = (Ci1 , Ci2 , . . . , Ci�), * ≥ 1, such that
Mijij+1 �= 0 for every j = 1, 2, . . . , * − 1. We say that * is the length of κ while
the order of κ is the number of its dominant components. Let Γ denote the
family of all chains in G starting with an initial component and ending with a
final component. We say that a chain κ is a main chain if κ ∈ Γ and its order
is maximal in Γ . We denote by Γm the set of all main chains in G.

In Section 3.1 we illustrate the role of main chains, which leads us to study
the simple but representative case when the model has just one main chain, say
κ. We first determine the limit distribution of Yn when all dominant components
of κ are primitive, non-degenerate and have distinct mean constants. A similar
approach can be developed when the above mean constants are partially or
totally coincident.

For this reason we introduce the notion of simple model. Formally, we say that
(ξ, µ, η) is a simple linear representation, or just a simple model, if Γm contains
only one chain κ and, for every dominant component Ci in κ, Mi primitive and
Ai �= 0 �= Bi. Note that, for such a matrix Mi, the mean constant βi and the
variance constants γi can be defined as in (4), 0 < βi < 1 and γi > 0.

In simple models the limit distribution of Yn first depends on the order k of
κ, i.e. the number of its dominant components. If k ≤ 2 the limit distribution is
known and derives from the analysis of the bicomponent models given in [4]:
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– If κ has only one dominant component Ci then the limit distribution of
Yn−βin√

γin
is a Gaussian distribution of mean value 0 and variance 1;

– If κ has two dominant components Ci, Cj then we have the following three
subcases:
1. If βi �= βj then Yn/n converges in law to a random variable uniformly

distributed in the interval [b1, b2], where b1 = min{βi, βj} and b2 =
max{βi, βj};

2. If βi = βj = β but γi �= γj then the limit distribution of Yn−βn√
n

is a
mixture of normal distributions of mean value 0 and variance uniformly
distributed in the interval [c1, c2], where c1 = min{γi, γj} and c2 =
max{γi, γj}. In other words, Yn−βn√

n
converges in law to a random variable

with density function

f(x) =
1

c2 − c1

∫ c2

c1

e−x2/(2v)

√
2πv

dv ;

3. If βi = βj = β and γi = γj = γ then the distribution of Yn−βn√
γn again

converges to a Gaussian distribution of mean value 0 and variance 1.

In Section 4 we determine the limit distribution for simple models having
main chain (of arbitrary order) with distinct mean constants of the dominant
components; this result generalizes point 1) above. In Section 5, we extend these
results to all simple models (with partially or totally coincident mean constants
of dominant components) and also to all models whose main chains are simple
(i.e. with primitive, non-degenerate dominant components).

We observe that the only cases not covered by our analysis concern the ra-
tional models where some dominant component of main chain is either non-
primitive or degenerate. In the first case periodicity phenomena occur while in
the second one a large variety of possible behaviours can be obtained even in
bicomponent models [4].

3.1 The Role of Main Chains

In this section we show how the main chains determine the limit distribution of
the sequence {Yn} associated with the linear representation (ξ, µ, η). Intuitively,
this is a consequence of two facts. First, by equation (2) the characteristic func-
tion of (a normalization of) Yn depends on the sequences {rn(z)} for z near 0,
and hence on the generating function ξTH(z, w)η. Second, by (5), this function
is a sum of products of the form given in (7), each of which is identified by a
chain.

Thus, let us examine such terms. First consider the case i = j and hence
the terms of the form ξTj Hjj(z, w)ηj . Relation (6) implies that, as z tends to
0, the singularities of each of its entries approach the inverses of eigenvalues of
Mj . Then, we can distinguish three cases according whether Mj is dominant
and primitive, dominant but non-primitive, or non-dominant. In each of these
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cases, the Perron–Frobenius theory gives us the necessary information on the
eigenvalues of Mj , that allows us to analyse the singularities of ξTj Hjj(z, w)ηj
in a neighbourhood of z = 0.

The results of this analysis can be applied to functions ξTi Hij(z, w)ηj where
i �= j. Recalling (7), we consider an arbitrary chain κ = (Ci1 , Ci2 , . . . , Ci�) with
* ≥ 2 and we define the sequence {rn(κ)(z)} by setting

∞∑

n=0

r
(κ)
n (z)wn = ξ

T
i1

Hi1i1 (z, w)Mi1i2 (z)Hi2i2 (z, w) · · ·Mi�−1i�
(z)Hi�i�

(z, w)ηi�
· w�−1

. (8)

Then one can prove that for z = c/n, c ∈ C, the terms corresponding to the
main chains have singularities of smallest modulus with the largest degree, and
hence they yield the main asymptotic contribution to the associated sequence
{rn(c/n)}. Formalizing the previous intuitive argument, one gets the following
result.

Theorem 1. If all dominant components of the main chains are primitive and
non-degenerate then, for every constant c ∈ C, we have

rn(c/n) =
∑

κ∈Γm

r(κ)n (c/n) (1 +O(1/n)) = Θ(λnnk−1)

where k is the order of the main chains.1

We observe that Theorem 1 may not hold if the main chains admit non-
primitive dominant components.

4 Main Results

In this section we determine the limit distribution of Yn in the simple models
that satisfy the following additional property: the dominant components of the
main chain have (pairwise) distinct mean constants. This is related to a special
family of distribution functions we call polynomial.

Consider a tuple b = (b1, b2, . . . , bk) of k ≥ 2 real numbers such that 0 < b1 <
b2 < · · · < bk < 1 and let fb : R −→ R be the function defined by

fb(x) =




0 if x < b1
(k − 1)

∑k
j=r cj(bj − x)k−2 if br−1 ≤ x < br for some 1 < r ≤ k

0 if x ≥ bk

(9)

where cj =
∏

i 	=j(bj − bi)−1 for every j = 1, 2, · · · , k. In the following we say
that a random variable X is a polynomial r.v. of parameters b if fb is its density
function. Note that if k = 2 then fb is the uniform density function over the
interval (b1, b2).

1 In this work, for any pair of sequences {fn}, {gn} ⊆ C, the expression fn = Θ(gn)
means that there exist two positive constants a, b such that a|gn| ≤ |fn| ≤ b|gn|
holds for every n large enough.
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Theorem 2. Let Yn be defined in a simple model of main chain κ having order
k and let β = (β1, . . . , βk) be the tuple of mean constants of dominant compo-
nents in κ in non-decreasing order. If k ≥ 2 and all βj’s are distinct then Yn/n
converges in law to a polynomial random variable of parameters β.

Sketch of the proof. First consider rn(it/n). Theorem 1 allows us to focus on
the contribution of rn(κ)(it/n) corresponding to the main chain κ. Then, by the
singularity analysis of its generating function (the right handside of equation
(8)), one can show that for every t ∈ R

rn

(
it

n

)
=

k−1∑
h=0

Sh

(
it

n

)
λn−hDh

(
it

n

)
· (1 + O(1/n)) as n → +∞,

where, for each h, the function Sh(z) is analytic at z = 0 and Dh is defined by

Dh(it/n) =
k∑

j=1

(1 + itβj/n)n−h+k−1∏
�	=j(itβj/n − itβ�/n)

if t �= 0, Dh(0) =

(
n − h+ k − 1

k − 1

)
.

Recalling that the characteristic function ΨYn/n(t) equals rn(it/n)/rn(0), one
can show that, as n tends to infinity, ΨYn/n(t) converges to

Φβ(t) =
(k − 1)!
(it)k−1

k∑
j=1

eiβjt∏
�	=j(βj − β�)

.

Finally, one can prove that fβ(x) is a density function such that Φβ(t) is its
characteristic function (for details see Proposition 7). ✷

The properties of the family of polynomial distributions, together with the
most relevant parts of the proof of Theorem 2, are all based on the convolutions
of sequences defined by powers of complex numbers. In the following section we
illustrate such properties and give some details of the proof sketched above.

4.1 Polynomial Distributions

Let us first consider the function Ga(w) = wk−1 · ∏k
i=1(1 − aiw)−1 where the

tuple a = (a1, a2, . . . , ak) has k ≥ 2 nonnull complex components. Then Ga is
the generating function of the convolution of the sequences {an1}n, {an2}n, . . . ,
{ank}n shifted of k−1 indices. More precisely, at the point w = 0 such a function
admits the power series expansion Ga(w) =

∑
n≥0 ga(n)w

n such that

ga(n) =




0 if 0 ≤ n ≤ k − 2∑
∗

ai1
1 ai2

2 · · · aik
k if n ≥ k − 1 (10)

where the sum (*) is extended over all k-tuples (i1, . . . , ik) ∈ N
k such that

i1 + · · · + ik = n − k + 1. When all aj ’s are distinct, the following proposition
allows us to express the terms of the sequence {ga(n)}n≥0 in a useful form and
provides us an important relationship among the aj ’s.



688 M. Goldwurm and V. Lonati

Proposition 3. Let a = (a1, a2, . . . , ak) be a tuple of k ≥ 2 distinct nonnull
complex numbers and let the sequence {ga(n)}n be defined by (10). Then, for
every n ∈ N, we have

ga(n) =
k∑

j=1

cj an
j

where cj =
∏

i 	=j(aj − ai)−1 for every j = 1, 2, · · · , k. Moreover, the polynomial∑
j cj(aj − x)s is identically null for each 0 ≤ s ≤ k − 2 and in particular∑
j cja

s
j = 0. Finally we have

∑
j cja

k−1
j = 1 .

The application of the previous proposition yields the following results on fb.

Proposition 4. If k ≥ 3 then fb is continuously differentiable all over R up
to the order k − 3. Moreover the (k − 2)-th derivative of fb is well defined in
R\{b1, . . . , bk} and is constant in each of the intervals (bi, bi+1), i = 1, · · · , k−1.

Lemma 5. Let f : R → R be a function admitting j-th derivative all over R

for some j ≥ 1. Also assume that, for some reals a < b, f has m zeros in (a, b)
and f(x) = 0 for each x ≤ a or x ≥ b. Then, for every i = 1, . . . , j, the i-th
derivative of f admits at least m+ i zeros in (a, b).

Proof. We reason by induction on i = 1, . . . , j. If i = 1, then consider the m+ 1
intervals determined by the zeros of f in [a, b]. For each of them, say (x1, x2),
Rolle’s Theorem guarantees that f ′(x) = 0 for some x ∈ (x1, x2).

Now assume 1 < i < j and consider the i-th derivative of f , that is g = f (i).
By the properties of f , we have g(a) = g(b) = 0 and by the inductive hypotheses
g admits m+ i zeros in (a, b). Therefore, by applying the previous argument to
g, one proves that g′ = f (i+1) admits m+ i+ 1 zeros in (a, b). ✷

Proposition 6. For every k ≥ 3, the function fb is nonnegative and admits a
unique maximum all over R.

Proof. If k = 3 the property follows by a direct inspection of the function, which
is linear and nonnull in the intervals (b1, b2) and (b2, b3). If k ≥ 4, let us consider
the (k−3)-th derivative fb(k−3)(x) of fb(x). It is immediate to see that fb(k−3)(x)
is linear with respect to x in each of the k− 1 intervals (bi, bi+1), i = 1, . . . k− 1.
Moreover, by Proposition 3, it does not vanish in (b1, b2) ∪ (bk−1, bk). Thus,
fb

(k−3) has at most k − 3 many zeros in (b1, bk).
Now, assume by contradiction that fb is not unimodal. Then its derivative

f ′
b vanishes in at least 3 points in the interval (b1, bk) and hence f ′

b satisfies
the hypotheses of Lemma 5 with i = k − 4 and m = 3. As a consequence,
fb

(k−3) admits at least k − 1 zeros in (b1, bk), which contradicts the previous
property. ✷

Fig.1 and Fig.2 show the graphics of the functions fb having parameters
b = (0.1, 0.3, 0.4, 0.8) and b = (0.008, 0.95, 0.96, 0.97, 0.98, 0.99), respectively. In
each figure the first picture represents the entire curve, while the others show the
details of the function in some subintervals. The vertical bars indicate the values
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Fig. 1. Graphics of the function fb(x), where b1 = 0.1, b2 = 0.3, b3 = 0.4, b4 = 0.8.
The vertical bars indicate the values of bj ’s
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Fig. 2. Graphics of the function fb(x), where b1 = 0.008, b2 = 0.95, b3 = 0.96, b4 =
0.97, b5 = 0.98, b6 = 0.99. The vertical bars indicate the values of bj ’s

of bj ’s. Note that if k = 4 the maximum necessarily lays in the intermediate
interval (b2, b3). On the contrary, if k > 4 the maximum can lay in any interval
between b2 and bk−1. For instance in Fig. 2, due to the asymmetric position of
the points bj ’s, it lays in the second interval (b2, b3).

Proposition 7. For every b = (b1, b2, . . . , bk) ∈ R
k such that 0 < b1 < b2 <

· · · < bk < 1 and k ≥ 2, fb(x) is a density function and Φb(t) is its characteristic
function.

Proof. Using Proposition 3, one can show that limt→0 Φb(t) = 1 by a direct
computation. Therefore, it suffices to show that

∫ +∞
−∞ fb(x)eitxdx = Φb(t) for

every t ∈ R. We prove this equality by using Proposition 3 again. Set I(t) =∫ ∞
−∞ fb(x)e

itxdx and cj =
∏

i 	=j(bj − bi)−1 for every j = 1, . . . , k. Observe that

I(t) = (k − 1)
k∑

r=2

k∑
j=r

cj

∫ br

br−1

(bj − x)k−2eitxdx .

Integrating by parts one can verify that for t �= 0 the function eitx(c−x)p admits
the antiderivative

eitx

it

p∑
s=0

p! (c − x)p−s

(p − s)! (it)s
.

Hence we can write I(t) =
∑k

r=2
∑k

j=r cj(Ar,j −Ar−1,j) where

Ar,j = eitbr

k−2∑
s=0

(k − 1)! (bj − br)k−2−s

(k − 2 − s)! (it)s+1 and in particular Ar,r =
(k − 1)!
(it)k−1 eitbr .

Now set Br =
∑k

j=r cjAr,j and Cr =
∑k

j=r cjAr−1,j . For each 2 ≤ r ≤ k − 1 we
have Br − Cr+1 = crAr,r and moreover Bk = ckAk,k. Finally, by Proposition 3
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we have C2 =
∑k

j=1 cjA1,j − c1A1,1 = −c1A1,1. As a consequence we get the
result, since the integral can be computed as follows

I(t) =
k∑

r=2

(Br − Cr) =
k∑

j=1

cjAj,j =
(k − 1)!
(it)k−1

k∑
j=1

cje
itbj = Φb(t) . ��

5 Further Developments

The analysis presented in the previous section can be extended to all simple
models, also when the mean constants βj ’s (associated with the dominant com-
ponents of the main chain) are partially or totally coincident. The limit dis-
tributions of our statistics in this more general case are defined extending the
notion of polynomial density function given in (9) by allowing multiplicities in
the associated tuple b and proving an analogue of Proposition 3 for convolutions
with multiplicities.

To state these results precisely we only have to introduce the following char-
acteristic function. Let b = (b1, b2, . . . , br) be a tuple of r ≥ 2 distinct real
numbers lying in the interval (0, 1) and let m = (m1,m2, . . . ,mr) ∈ N

r be a
tuple of multiplicities, where mj ≥ 1 for each j and m1 + . . . +mr = k. Then
define the function

Φb,m(t) = (k − 1)!
r∑

j=1

mj∑
s=1

cj,s · eitbj

(it)k−s(s − 1!)

where cj,s = (−1)mj−s
∑

∑
� �=j h�=mj−s

∏
�	=j

(
m� + h� − 1

m� − 1

)
· 1
(bj − b�)m�+h�

.

One can prove that this is a characteristic function and the corresponding density
function can be obtained from (9) by a continuity argument. The main difference
is that the new density may be non-continuous at the points x = bj such that
mj > 1, j = 1, . . . , k.

Now, let Yn be defined in a simple model having main chain κ of order k. Let
β1, . . . , βk and γ1, . . . , γk be, respectively, the mean and variance constants of
the dominant components in κ. We also denote by β and γ the tuples of distinct
βj ’s and γj ’s in increasing order and by u and v the tuples of the corresponding
multiplicities. Clearly, if β1, . . . , βk are pairwise distinct then Theorem 2 applies.
Otherwise we have the following cases:

– If β1, . . . , βk are partially but not totally coincident (i.e. βi = βj and βs �= βt
for some indices i, j, s, t, i �= j), then Yn/n converges in distribution to a
random variable of characteristic function Φβ,u(t);

– If βj = β1 for all j = 2, . . . , k and all γj ’s are pairwise distinct, then Yn−β1n√
n

converges in distribution to a random variable of characteristic function
Φγ(−t2/(2i));
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– If βj = β1 for all j = 2, . . . , k and γ1, . . . , γk are partially but not totally
coincident, then Yn−β1n√

n
converges in distribution to a random variable of

characteristic function Φγ,v(−t2/(2i));
– If βj = β1 and γj = γ1 for all j = 2, . . . , k, then Yn−β1n√

γ1n
converges in

distribution to a normal random variable of mean 0 and variance 1.

The previous results can be further extended by a standard conditioning
argument (already used in [4]) to all rational models (ξ, µ, η) whose main chains
are “simple”, i.e. for every κ ∈ Γm all dominant components in κ are primitive
and non-degenerate. In this case, by equation (8), for every κ ∈ Γm one can
easily see that

r(κ)
n (z) = sκ(z)λnnk−1 +O(λnnk−2)

where k is the degree of κ and sκ(z) is a nonnull analytic function at z = 0.
Then, by Theorem 1, we have

rn(0) = Rλnnk−1 +O(λnnk−2)

where R =
∑

κ∈Γm
sκ(0). We can also associate each κ ∈ Γm with the probability

value pκ, given by pκ = sκ(0)/R. Note that the values {pκ}κ∈Γm
define a discrete

probability measure and they can be explicitly computed from the triple (ξ, µ, η).
Moreover, each κ ∈ Γm defines a simple rational model in its own right, with

an associate sequence of random variables {Yn(κ)} having its own limit distribu-
tion according to Theorem 2 and list items above. In particular, Yn(κ)/n always
converges in distribution to a random variable of distribution function Fκ(x)
defined according to the previous results. Note that if all constants βj ’s are here
equal, then Fκ(x) reduces to the degenerate distribution of mass point β1. Now
it is not difficult to see that the overall statistics Yn/n converges in distribution
to a r.v. of distribution function F (x) defined by F (x) =

∑
κ∈Γm

Fκ(x)pκ.
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