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Abstract. We give a characterization, in terms of computational com-
plexity, of the family Rec1 of the unary picture languages that are tiling
recognizable. We introduce quasi-unary strings to represent unary pic-
tures and we prove that any unary picture language L is in Rec1 if and
only if the set of all quasi-unary strings encoding the elements of L is rec-
ognizable by a one-tape nondeterministic Turing machine that is space
and head-reversal linearly bounded. In particular, the result implies that
the family of binary string languages corresponding to tiling-recognizable
square languages lies between NTime(2n) and NTime(4n). This also im-
plies the existence of a nontiling-recognizable unary square language that
corresponds to a binary string language recognizable in nondeterministic
time O(4n log n).

Classification: automata and formal languages, computational com-
plexity.

Keywords: unary picture languages, tiling systems, Turing machine
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1 Introduction

Picture languages have been introduced in the literature as two-dimensional
extension of traditional string languages, a picture being a two-dimensional array
of elements from a finite alphabet. They have been originally considered as formal
models for image processing in connection with problems of pattern recognition.
Several classical tools and concepts have been used to classify picture languages
and study their properties: regular expressions [8], grammars [12], automata [6],
logic formulas [5].

One of the main effort in this area is to capture the notion of recognizabil-
ity. In particular, various notions of two-dimensional finite automaton have been
proposed and studied in the literature [6,7]. An interesting formal model for the
recognition of picture languages is given by the so-called tiling systems intro-
duced in [3], which are based on projection of local properties. A tiling system τ
is defined by a finite set Θ of square pictures of size 2 together with a projection
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between alphabets. Roughly speaking, a language is recognized by τ if each of
its elements can be obtained as a projection of a picture whose subpictures of
size 2 belong to Θ. The class of picture languages recognized by such systems
satisfy relevant properties, which resemble classical properties of regular string
languages [4].

A special case is represented by pictures over a one-letter alphabet: in this
case only the shape of the picture is relevant, and hence a unary picture is sim-
ply identified by a pair of positive integers. In this context, a general goal is
to define techniques to describe families of recognizable languages, or to con-
struct examples of non-recognizable languages [4,7]. For instance, families of
tiling-recognizable unary picture languages are introduced in [4] by means of
integer functions or in [2] by means of special regular expressions, whereas in [7]
two-dimensional automata are used to recognize unary languages and several
strategies to explore pictures are presented.

In this work we give a complexity result concerning the unary picture lan-
guages recognized by tiling systems. We characterize such a family by means of
non-deterministic Turing machines that are space and head-reversal bounded.
More precisely, we introduce a notion of quasi-unary strings to represent pairs of
positive numbers and we prove that a unary picture language L is tiling recog-
nizable if and only if the set of all quasi-unary strings encoding the sizes of the
elements of L is recognizable by a one-tape non-deterministic Turing machine
M that works within max(n, m) space and executes at most min(n, m) head
reversals, on the input representing the pair (n, m).

In particular for the case of squares, this result allows us to relate the recog-
nizability of unary square pictures to nondeterministic time complexity bounds.
Informally, it shows that the complexity of the binary encodings of tiling-
recognizable unary square picture languages is located between NTime(2n) and
NTime(4n). This yields a large variety of examples of picture languages that
are tiling recognizable. For instance, all sets of binary encodings of NP problems
correspond to tiling-recognizable (unary square) picture languages.

Also, our characterization allows us to use separating results on time complex-
ity classes as a tool for defining recognizable and non-recognizable unary picture
languages. In particular, using a property proved in [11], we show the existence
of a unary square language that is not tiling recognizable, but corresponds to a
binary string language recognizable in nondeterministic time O(4n log n).

2 Preliminaries on Picture Languages

Given a finite alphabet Σ, a picture (or two-dimensional string) over Σ is either
a two-dimensional array (i.e., a matrix) of elements of Σ or the empty picture
λ. The set of all pictures over Σ is denoted by Σ∗∗; a picture language (or
two-dimensional language)over Σ is a subset of Σ∗∗.

Given a picture p ∈ Σ∗∗, we use rp and cp to denote the number of rows and
columns of p, respectively. The pair (rp, cp) is called the size of p. By definition we
have rp > 0 and cp > 0, except for the empty picture λ that has size (0, 0). The
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symbol in p with coordinates (i, j) is denoted by p(i, j), for every 1 ≤ i ≤ rp and
1 ≤ j ≤ cp. If rp = cp, then p is called a square picture and the size of p is simply
rp. A square language is a picture language containing only square pictures. If the
alphabet Σ is a singleton, then the pictures over Σ∗∗ are called unary pictures.
A unary picture language is a subset of Σ∗∗, where Σ is a singleton.

For any picture p ∈ Σ∗∗ of size (m, n), we use p̂ to denote a new picture of
size (m + 2, n + 2) obtained by surrounding p with a special boundary symbol
� �∈ Σ. Such boundary will be useful when describing scanning strategies for
pictures.

Many operations can be defined between pictures and picture languages. In
particular, we recall the operations of row and column concatenation. Let p and
q be pictures over Σ∗∗ of size (rp, cp) and (rq, cq), respectively. If rp = rq, we
define the column concatenation p � q between p and q as the picture of size
(rp, cp + cq) whose i-th row equals the concatenation of the i-th rows of p and q,
for every 1 ≤ i ≤ rp. If cp = cq, we define the row concatenation p�q analogously.
Clearly, � and � are partial operations over the set Σ∗∗. These definitions can
be extended to picture languages and iterated: for every language L ⊆ Σ∗∗, we
set L0� = L0� = {λ}, Li� = L�L(i−1)� and Li� = L�L(i−1)�, for every i ≥ 1.
Thus, one can define the row and column closures as the transitive closures of
� and �:

L∗� =
⋃

i≥0

Li� L∗� =
⋃

i≥0

Li�,

which can be seen as a sort of two-dimensional Kleene star. Another useful
operation is the so-called rotation: given p ∈ Σ∗∗, its rotation pR is the picture
of size (cp, rp) defined by (pR)ij = prp+1−j,i.

From the recognizability view point, various approaches have been proposed.
In particular, here we consider the class Rec and its definition in terms of tiling
systems [3,4]. First, we recall the definition of local picture language.

Definition 1. A tile is a square picture of size 2; for every picture p, T (p)
denotes the set of all tiles that are subpictures of p. A picture language L ⊆ Γ ∗∗

is called local if there exists a finite set Θ of tiles over the alphabet Γ ∪{�} such
that L = {p ∈ Γ ∗∗ | T (p̂) ⊆ Θ}. In this case we write L = L(Θ).

We also need the notion of projection of pictures and picture languages. Let
π : Γ → Σ be a mapping between two alphabets. Given a picture p ∈ Γ ∗∗, the
projection of p by π is the picture π(p) ∈ Σ∗∗ such that π(p) (i, j) = π(p(i, j)) for
every pair of coordinates i, j. Analogously, the projection of a language L ⊆ Γ ∗∗

by π is the set π(L) = {π(p) | p ∈ Γ ∗∗} ⊆ Σ∗∗.

Definition 2. A tiling system is a 4-tuple τ = 〈Σ, Γ, Θ, π〉 where Σ and Γ
are two finite alphabets, Θ is a finite set of tiles over the alphabet Γ ∪ {�} and
π : Γ → Σ is a projection. A picture language is tiling recognizable if there
exists a tiling system 〈Σ, Γ, Θ, π〉 such that L = π(L(Θ)). Rec is the class of
picture languages that are tiling recognizable.

Notice in particular that any local language is tiling recognizable.
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The class Rec satisfies some remarkable properties. For instance it can be
defined as the class of languages recognized by online tessellation automata,
that are special acceptors related to cellular automata [6]; they can be expressed
by formulas of existential monadic second order [5]; they can be defined by means
of regular-like expressions based on certain composition rules between pictures
[4]. In particular we will use the fact that Rec is closed with respect to the
operations ∪, �, �,∗� ,∗� ,R.

Finally, since we are interested in unary pictures, we also introduce the fol-
lowing

Definition 3. Rec1 is the subclass of Rec containing the unary picture lan-
guages that are tiling recognizable.

3 Characterization of Rec1

In this section, we state our main result, that is a characterization of the class
of unary picture languages that are tiling recognizable.

To this aim, consider the alphabet Σ = {◦} and notice that any unary picture
p ∈ {◦}∗∗ is identified by its size, that is by the pair (rp, cp). Thus, unary pictures
(i.e. pairs of positive integers) can be encoded by quasi-unary strings as follows.
We consider the set of unary strings over Σ

U = {◦n | n > 0}

and the following sets of strings that are unary except for one special letter h or
v (not occurring in first position):

Qh = {◦nh ◦k | n > 0, k ≥ 0} ,

Qv = {◦nv ◦k | n > 0, k ≥ 0} .

We call quasi-unary string over the alphabet {◦, h, v} any string in Q = U ∪Qh ∪
Qv. The length of any quasi-unary string x is denoted as usual by |x|, whereas
we use ◦|x| to denote the length of the longest prefix of x in ◦+. The use of
symbols h and v allows us to distinguish among squares, horizontal (with more
columns than rows), and vertical rectangles. Thus, a quasi-unary string x ∈ Qh

represents the unary horizontal rectangle of size (◦|x|, |x|); x ∈ Qv represents the
unary vertical rectangle of size (|x|, ◦|x|); whereas x ∈ U represents the unary
square of size |x|.

Summarizing the previous definitions, the encoding φ from unary pictures to
quasi-unary strings can be stated as follows: for every picture p ∈ {◦}∗∗, we have

φ(p) =

⎧
⎨

⎩

◦rp h ◦cp−rp−1 if rp < cp

◦rp if rp = cp

◦cp v ◦rp−cp−1 if rp > cp

Notice that |φ(p)| = max(rp, cp), while ◦|φ(p)| = min(rp, cp).
Now, let us introduce the complexity classes of quasi-unary languages that we

shall use to characterize the class of tiling-recognizable unary languages.
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Definition 4. NSpaceRevQ is the class of quasi-unary string languages that
can be recognized by 1-tape nondeterministic Turing machines working within |x|
space and executing at most ◦|x| head reversals, for any input x in Q.

Our main theorem can then be stated as follows:

Theorem 1. A unary picture language L is in Rec1 if and only if φ(L) belongs
to NSpaceRevQ.

The proof of Theorem 1 is split into two parts. In section 4 we prove that if L
is in Rec1, then φ(L) belongs to NSpaceRevQ, whereas in Section 5 we prove
the inverse.

4 Recognizability Implies the Complexity Bound

In this section we prove that, if L is a tiling-recognizable unary picture language,
then φ(L) is in NSpaceRevQ. In order to prove such a result, let Θ be a finite
set of tiles over some alphabet Γ , and consider the following problem.

Size Representability (Θ)
Instance: a quasi-unary string x ∈ Q.
Question: does there exist p ∈ L(Θ) whose size is represented by x?

Lemma 1. The problem Size Representability (Θ) is in NSpaceRevQ for
every finite set of tiles Θ.

Proof. We define a Turing machine M for the Size Representability problem,
that nondeterministically tries to generate some p ∈ L(Θ) of the required size.
First of all, M establishes if x ∈ Qh, x ∈ Qv, or x ∈ U . This can be done
nondeterministically without head reversals. If x ∈ Qh or x ∈ U , then the
generation is performed row by row, otherwise the generation has to be done
column by column. The input is accepted if and only if such a generating process
can be accomplished. We describe in details only the steps executed in the case
x ∈ Qh; the other cases are similar and are left to the reader.

The working alphabet Γ ′ of M contains the symbols ◦, h, v, � � 
, all the pairs
(a, b) ∈ (Γ ∪ {�}) × (Γ ∪ {�}), and their marked versions (a, b) and (ã, b). The
symbols (a, b) shall be used in correspondence with a pair of adjacent symbols in
some column of the picture p generated during the computation; the overlined
symbols shall be used as bookmarks at the ◦|x|-th cell, tildes shall be used to
implement a counter.

The machine M works only on the portion of the tape containing the input
x, which we call the working portion of the tape. The computation behaves as
follows:

1. First of all, M reads the tape rightwards until the first blank, nondeter-
ministically replacing each input symbol according to Θ, whenever such a
replacement is possible. More precisely:
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– the leftmost symbol is replaced by some pair (�, a) such that the tile t1
in the figure below belongs to Θ;

– any next symbol is replaced by some pair (�, b) in such a way that, for
each pair of consecutive pairs (�, b) and (�, b′), the tile t2 in the figure
belongs to Θ (the position of the symbol h is preserved by using overlined
pairs);

– the rightmost symbol ◦ is replaced by some pair (�, c) such that the tile t3
in the figure belongs to Θ. At any position, if no replacement is allowed,
then M halts and rejects.

t1 =
� �

� a
t2 =

� �

b b′
t3 =

� �

c �

2. M changes direction and reads all the working portion of the tape without
head reversals, replacing each symbol (a, b) by (b, c) in such a way that the
ending symbols and each pair of consecutive symbols do respect Θ (as in
point 1). Such a procedure is repeated (◦|x| − 1)-many times. Observe that
this task can be performed by using the first (◦|x|) cells of the tape (those
that precede some overlined symbol of Γ ′) and marking one cell with a tilde
at each repetition. Also during this phase, if no replacement is allowed, then
M halts and rejects.

3. After the (◦|x| − 1)-th repetition of step 2, M changes direction and reads
all the working portion of the tape again, without head reversals. Now each
symbol (a, b) is replaced by (b, �) according to Θ, and whenever no replace-
ment is allowed, then M halts and rejects.

The input x is accepted if and only if the procedure can be concluded, that is, if
and only if there exists a picture p ∈ L(Θ) of size (◦|x|, |x|). Since the machine
M works exactly in space |x| and executes exactly ◦|x| head reversals, the proof
is complete.

Theorem 2. If L is a unary picture language in Rec1, then φ(L) belongs to
NSpaceRevQ.

Proof. Let 〈{◦}, Γ, Θ, π〉 be a tiling system for L, and consider the Turing ma-
chine M that solves the problem Size Representability(Θ). Now notice that
π maps all symbols of Γ to ◦, that is π forgets the content of p and preserves
only its size. Thus x ∈ φ(L) = φ(π(L(Θ))) means that there is a picture in L(Θ)
whose size is represented by x. Therefore M exactly recognizes the set φ(L) and
this concludes the proof.

5 The Complexity Bound Implies Recognizability

To prove the inverse of Theorem 2, we first introduce an auxiliary picture lan-
guage, associated with the accepting computations of a 1-tape nondeterministic
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Turing Machine. A similar approach is used in [3] to prove that the emptiness
problem for the family Rec is undecidable.

5.1 The Accepting-Computation Language of a Turing Machine

Let M be a 1-tape nondeterministic Turing machine M , and let Σ and Λ be the
input and the working alphabet (Λ contains the blank symbol � 
). We denote by
Q the set of states, which includes the initial state q0 and a unique accepting
state qyes. Also let δ : Q × Λ → 2Q×Λ×{+,−} be the transition function of M .
Without loss of generality, we assume M can never print the blank symbol � 
,
and hence (q, c, x) ∈ δ(p, a) implies c �= � 
. Then, set ΛQ = {σq | σ ∈ Λ, q ∈ Q},
a configuration of M is a string C = xσqy ∈ Λ∗ΛQΛ∗ which represents the
instantaneous description of the machine where xσy is the work portion of the
tape, q is the current state and the head scans the cell containing σ on the right
of x. If q = q0 and x is the empty string, then C is the initial configuration of
M on input σy. If q = qyes then C is an accepting configuration. We assume the
machine halts in every accepting configuration.

Given two configurations C and D of M , we write C � D whenever M can
go from C to D without head reversals, possibly by several distinct moves. We
call run such a sequence of moves.

We define an accepting computation1 of M on input x ∈ Σ∗ as a string of the
form

W = W1 � W2 � · · · � Wn

such that all Wj ’s are configurations of M , W1 is the initial configuration on input
x, Wn is an accepting configuration, Wi � Wi+1 holds for each i = 1, . . . , n − 1,
and there is a head reversal at Wi for every 1 < i < n, that is, in the runs from
Wi−1 to Wi and from Wi to Wi+1, the head moves to opposite directions.

Given an accepting computation W , let m = maxi |Wi| and consider the
picture of size n × m containing the string Wi (possibly followed by � 
’s) on the
i-th row, for 1 ≤ i ≤ n. Notice that, from such a picture, one can recover the
input and the sequence of runs but not the complete step-by-step computation
on the same input.

The accepting-computation language of M is defined as the set A(M) of all
pictures corresponding to any accepting computation of M . Note that every
accepting computation W of M corresponds to a picture w ∈ A(M) such that
rw − 2 equals the number of head reversals executed in W (corresponding to
W2, · · · , Wn−1) and cw is the space used in W .

Example 1. Let M be a Turing machine such that {a, b, c} is the input and
working alphabet, Q = {1, 2, 3, 4, 5, y} is the set of states, y is the accepting
state. Then, consider the sequence of moves represented in the following table,
where (σ′, q′, ∗) ∈ δ(σ, q):

1 We remark that usually the term computation refers to a description of the sequence
of all single moves the machine executes. Rather, here we refer to this concept using
the expression step-by-step computation.
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q 0 1 4 2 1 4 5 1 4 0 2 3 2 4 2 0
σ a b a c b c a b c b c a b a a c

q′ 1 4 2 1 4 5 1 4 0 2 3 2 4 2 0 y

σ′ c a c b a b c a b a b b a c b b

∗ + + + + + − − + + + + − − + − −

The picture w associated to such a computation W = W1 � W2 � · · · � W7 is
given by

a0 b a c b c c a → W1

c a c b a c4 c a → W2

c a c b1 c b c a → W3

w = c a c a b a b a3 → W4

c a c a b a4 a b → W5

c a c a b c a2 b → W6

c a c a by b b b → W7

Proposition 1. The accepting-computation language of a 1-tape nondetermin-
istic Turing machine is in Rec.

Sketch of the proof. One can prove that, for every given 1-tape nondeterministic
Turing machine M , the accepting-computation language L of M is the projection
of a suitable language L′ in Rec. The complete proof of this fact is omitted
because of space constraints. Here we just say that, given M , for every picture
w ∈ L it is possible to define a new picture w′ ∈ L′ by marking some symbols of
w, so that w′ encodes all information about the step-by-step computation of M
on input w. Then, since such a computation can be described locally (the head
touches only two cells at each step), L′ can be recognized by a tiling system.
Hence, L is in Rec, too. �

5.2 Overlap of Picture Languages

We now introduce a partial operation in the set of all picture languages (over
all alphabets). Given two picture languages L1 and L2, we consider every pair
of pictures p ∈ L1 and q ∈ L2 with the same size and having the first row in
common, and we glue them along the first row. The collection of all these pairs
is called the overlap L1  L2.

More formally, given two pictures p and q of the same size (n, m), let p × q
be the picture such that (p × q)(i, j) = (p(i, j), q(i, j)) for every 1 ≤ i ≤ n and
1 ≤ j ≤ m. Then, the overlap of L1 and L2 is defined as

L1  L2 = {p × q | p ∈ L1, q ∈ L2, rp = rq, cp = cq,

p(1, j) = q(1, j) for every 1 ≤ j ≤ cp}

Proposition 2. Given two picture languages in Rec, their overlap is still
in Rec.



On the Complexity of Unary Tiling-Recognizable Picture Languages 389

Proof. Let L1 and L2 be two picture languages over the alphabets Σ1 and Σ2,
respectively, and assume that they are in Rec. Then, for each i ∈ {1, 2}, there
exists a tiling system 〈Σi, Γi, Θi, πi〉 recognizing Li. Set

Top(Θi) = {t ∈ Θi | t =
� �

a b
where a, b ∈ Γi ∪ {�}}

and let Left(Θi), Right(Θi), and Bottom(Θi) be defined analogously. Also, define
Inner(Θi) as the set of tiles of Θi that do not belong to any of the previous set.
Now, let Γ = Γ1 × Γ2 and define Θ as the union of the sets Inner(Θ), Left(Θ),
Right(Θ), Bottom(Θ), Top(Θ), where:

Inner(Θ) = { (a1, a2) (b1, b2)

(c1, c2) (d1, d2)
| ai bi

ci di

∈ Inner (Θi), i ∈ {1, 2}},

Left(Θ) = { � (a1, a2)

� (b1, b2)
| � ai

� bi

∈ Left(Θi), i ∈ {1, 2} },

Bottom(Θ) and Right(Θ) are defined similarly, whereas Top(Θ) is given by

Top(Θ) = { � �

(a1, a2) (b1, b2)
| � �

ai bi

∈ Top(Θi), i ∈ {1, 2} and

π1(a1) = π2(a2), π1(b1) = π2(b2)}.

Finally, set π = π1 × π2, that is, for each pair (a1, a2) ∈ Γ , set π(a1, a2) =
(π1(a1), π2(a2)). Clearly, 〈Σ1 × Σ2, Γ, Θ, π〉 is a tiling system recognizing the
overlap of L1 and L2.

We are now able to prove the second part of Theorem 1.

Theorem 3. Given any unary picture language L, if the quasi-unary string
language φ(L) is in NSpaceRevQ, then L is tiling recognizable.

Proof. Since φ(L) is in NSpaceRevQ, it is recognized by a 1-tape nondetermin-
istic Turing machine M that works in |x| space for any input x ∈ Q, and exe-
cutes at most ◦|x| head reversals during each computation. Thus, the accepting-
computation language A(M) of such a Turing machine is in Rec, by Proposition
1, and so is the language Ā obtained from A(M) by replacing the symbol ◦q0

by ◦ in the upper-leftmost cell of each picture in A(M). As a consequence, the
following language is in Rec, too:

A′ = Ā �
(
� 
∗�

)∗�

(observe that any picture in A′ can be seen as a picture in Ā possibly extended
downwards with rows of blanks).
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Now, let us introduce some special picture languages that shall be used to
bind the size of a picture, (i.e., they play the role of mask languages). Let Es be
the set of all unary squares and set

Eh = Es � h∗�
� ◦∗∗ and Ev = Es � v∗�

� ◦∗∗.

In other words, any p ∈ Es ∪ Eh contains, on each row, the quasi-unary string
representing its own size, while if p ∈ Ev, then p contains, on each row, the
quasi-unary string representing the size of pR. Moreover consider the picture
languages

Ls = A′  Es, Lh = A′  Eh and Lv = (A′  Ev)R.

and set L′ = Ls ∪ Lh ∪ Lv.
By Proposition 2, also L′ is tiling recognizable, and it turns out that L =

π(L′). Indeed, by the previous definition, we have that any quasi-unary string
x representing a picture of π(L′) is an accepted input of M , and hence it also
represents a picture in L. Thus, L and π(L′) being unary, we get π(L′) ⊆ L.

On the other hand, assume p ∈ L. First of all, notice that φ(p) is accepted
by M , hence there exists a ∈ Ā having φ(p) on the first row and such that
ca = max(rp, cp) and ra ≤ min(rp, cp). Let a′ ∈ A′ be the extension of a that has
exactly min(rp, cp) rows, and notice that a′ is a horizontal rectangle or a square,
independently of the shape of p. Moreover, consider the picture up = φ(p)◦|x|�.
Notice that, if p is a horizontal rectangle, then up ∈ Eh; if p is a vertical rectangle,
then up ∈ Ev, otherwise, if p is a square, up ∈ Es. In any case, up has the
same size as a′. Hence, if p is a square or a horizontal rectangle, then we have
p = π(a′  up); otherwise we have p = π

(
(a′  up)R

)
. In all cases, p ∈ π(L′) and

hence L ⊆ π(L′). Thus, L = π(L′) is in Rec1 and this concludes the proof.

6 Square Languages

In this last section we focus on unary square languages, that is on unary picture
languages whose elements are all squares. As should be clear at this moment of
the exposition, square languages are nothing but sets of positive integers, and so
far we represented them by unary strings over the alphabet {◦}. In the following
definition, we introduce a subclass of NSpaceRevQ that concerns only square
languages and their representation.

Definition 5. NSpaceRevU is the class of unary string languages that can be
recognized by 1-tape nondeterministic Turing machines working within n space
and executing at most n head reversals, for any input of length n.

Integers can also be represented with the classical binary encoding and this
suggest to define the binary complexity class corresponding to the previous def-
inition.

Definition 6. NSpaceRevB is the class of binary string languages that can be
recognized by 1-tape nondeterministic Turing machines working within 2n space
and executing at most 2n head reversals, for any input of length n.
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Notice that the families NSpaceRevU and NSpaceRevB are related to the well-
known time complexity classification. In particular, denoting by NTimeU (f(n))
(resp. NTimeB(f(n))) the class of unary (resp. binary) string languages that
can be recognized by 1-tape nondeterministic Turing machines working within
f(n) time for any input of length n, we have the following relations:

NTimeU (n) ⊆ NSpaceRevU ⊆ NTimeU (n2),

NTimeB(2n) ⊆ NSpaceRevB ⊆ NTimeB(4n). (1)

Theorem 1 can then be re-stated using these new classes, obtaining the fol-
lowing corollary.

Corollary 1. Given a unary square language L, the following statements are
equivalent:

– L is in Rec1,
– {◦rp | p ∈ L} ∈ NSpaceRevU ,
– {Bin(rp) | p ∈ L} ∈ NSpaceRevB ,

where Bin(n) is the binary encoding of the positive integer n.

The previous corollary provides a useful tool to verify whether a unary square
language is tiling recognizable. For instance, it proves that the set of unary square
pictures whose size is a prime number is in Rec1, since it is well-known that the
set of prime numbers is recognizable in polynomial time[1]. More generally, if π is
a NP problem, let Lπ be the language of all binary encodings of positive instances
of π. Then, the picture language {p ∈ ◦∗∗ | ∃x ∈ Lπ such that Bin (rp) = 1x}
belongs to Rec1.

A further, more complex, tiling-recognizable picture language can be built
by considering INEQ(RE,2), i.e. the inequality problem of regular expressions
with squaring, studied by Meyer and Stockmeyer in [9,10]. It is known that this
problem is complete in the class NExpTime =

⋃
c≥1 NTime(2cn) and hence it

is not even included in NP by well-known separation results [11]. It is not diffi-
cult to prove that a rather natural binary encoding of INEQ(RE,2) belongs to
NTimeB(2n) and hence, by the previous corollary and Equation 1, the corre-
sponding family of unary square pictures is tiling recognizable.

Another consequence of Corollary 1 concerns the construction of unary square
languages that are not tiling recognizable. For instance one can prove the exis-
tence of a unary square language that is not tiling recognizable, but such that
the set of binary encoding of its sizes is not too far (from a complexity view
point) from the class NSpaceRevB . In order to present such an example, for
any function f : N → R

+, let us define 2t-NTimeB(f) as the class of binary
string languages that are recognizable by 2-tape nondeterministic Turing ma-
chines working within time f(n) on every input of length n.

Proposition 3. There exists a unary square picture language L �∈ Rec1 such
that the string language S = {x ∈ {0, 1}∗ | 1x = Bin(rp) for a picture p ∈ L}
belongs to 2t-NTimeB(4n log n).
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Proof. The existence of such language is guaranteed by a property proved in [11].
If T1, T2 : N → R

+ are two running-time functions such that T1(n + 1)/T2(n)
tends to 0 as n goes to infinity, then there exists a language S ⊆ {0, 1}∗
that belongs to 2t-NTimeB(T2(n)) but does not belong to 2t-NTimeB(T1(n)).
Setting T1(n) = 4n, T2(n) = 4n log n, and observing that 2t-NTimeB(4n) ⊇
NSpaceRevB , by Theorem 1 we have that S is in 2t-NTimeB(4n log n) whereas
L cannot be tiling recognizable.

Concluding, we observe that a natural problem arising from our characteriza-
tion result is whether a separation property, similar to the one proved in [11],
also holds for complexity classes defined by bounding the number of head re-
versals. This would lead to simpler unary picture languages that are not tiling
recognizable.
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