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Abstract. Permutominoes are polyominoes defined by suitable pairs of permutations. In this paper
we provide a formula to count the number of convex permutominoes of given perimeter. To this aim
we define the transform of a generic pair of permutations, we characterize the transform of any pair
defining a convex permutomino, and we solve the counting problem in the transformed space.

1 Introduction

A polyomino (also known as lattice animal) is a finite collection of square cells of equal size arranged
with coincident sides. In this paper we consider a special class of polyominoes, namely the permutomi-
noes, that we define in a purely geometric way. Actually, the term “permutomino” arises from the fact
that this object can be defined by a diagram on the plane representing a pair of permutations. Such
diagrams were introduced in [8] as a tool to study Schubert varieties and used in [6] (where the term
“permutaomino” appeared for the first time) and [7] in relation to Kazhdan-Lusztig R-polynomials.

Counting the number of polyominoes and permutominoes is an interesting combinatorial problem,
still open in its more general form; yet, for some subclassesof polyominoes, exact formulae are known.
For instance, the number of convex polyominoes (i.e., whoseintersection with any vertical or horizontal
line is connected) of given perimeter has been obtained in [2], whereas the enumeration problem for
some subclasses of convex permutominoes has been solved in [5]. In this paper, we provide an explicit
formula for the number of convex permutominoes of a given perimeter.

Our counting technique is based on two basic facts. First, the boundary of every convex permu-
tomino can be decomposed into four subpaths describing, in this order, a down/rightward, up/rightward,
up/leftward, down/leftward stepwise movement. Second, for each abscissa (ordinate) there is exactly one
vertical (horizontal) segment in the boundary with that coordinate. Actually, these two constraints hold
not only for the boundary of convex permutominoes, but for a larger class of circuits we call admissible:
in Section 3 we describe admissible circuits and we obtain their numberAn in Section 5. In Section 4
we characterize admissible circuits that do not define a permutomino: again we obtain their numberBn

in Section 5. As a consequence, we get the number of convex permutominoes as the differenceAn−Bn.

2 Preliminaries

In this section, we shall recall some basic definitions and properties of polyominoes, permutominoes and
generating functions.

2.1 Polyominoes and permutominoes

A cell is a closed subset ofR2 of the form [a,b]× [a+ 1,b+ 1], wherea,b ∈ Z; we shall identify
such a cell with the pair(a,b). Let us define a binary relation∼ of adjacencybetween cells by letting
(a,b) ∼ (a′,b′) if and only if a = a′ and|b−b′| = 1, or |a−a′| = 1 andb = b′. A subsetP of R2 is a
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polyominoif and only if it is a finite nonempty union of cells that is connected by adjacency, i.e., such
that if (a,b),(a′,b′) ∈ P then there exist(a1,b1), . . . ,(ak,bk) ∈ P such that(a,b) = (a1,b1) ∼ (a2,b2) ∼
·· · ∼ (ak,bk) = (a′,b′). See Figure 1 (a) for an example. A polyomino is defined up to translations;
without loss of generality, we assume that the lowest leftmost vertex of the mininal bounding rectangle
of the polyomino is placed at the point(1,1).

Special types of polyominoesP are the following:

– P is row-convexif and only if (a,b),(a′,b) ∈ P anda≤ a′′ ≤ a′ imply (a′′,b) ∈ P;
– P is column-convexif and only if (a,b),(a,b′) ∈ P andb≤ b′′ ≤ b′ imply (a,b′′) ∈ P;
– P is convexif and only if it is both row- and column-convex;
– P is directedif and only if it contains at least one of the corner cells of its minimal bounding rectan-

gle;
– P is parallelogramif and only if it is convex and contains at least a pair of opposite corner cells of

its minimal bounding rectangle (e.g., both the lower-left and upper-right cells).

The (topological) border of a polyominoP is a disjoint union of simple closed curves; in particular, if
there is only one curve, we say thatP hasno holes: all polyominoes in this work will have no holes. The
border is a simple closed curve made of alternating verticaland horizontal nontrivial segments whose
endpoints (vertices) have integral coordinates; conversely, every such a closed curve is the border of a
polyomino without holes, so we shall freely identify polyominoes with their borders.

We say thatP is apermutomino of size nif and only if its minimal bounding rectangle is a square of
sizen−1, and the border ofP has exactly one vertical segment of abscissazand one horizontal segment
of ordinatez, for everyz∈ {1, . . . ,n}. Notice that a convex permutomino of sizen has perimeter 4(n−1).

In order to handle polyominoes we introduce the following definitions. A (stepwise)simple pathis
a sequenceP1 = (x1,y1), P′

1 = (x′1,y
′
1), P2 = (x2,y2), P′

2 = (x′2,y
′
2) . . . , Pm = (xm,ym), P′

m = (x′m,y′m) of
distinct points with integer coordinates such that, for alli ∈ {1, . . . ,m}, xi = x′i , andy′i = yi+1 if i < m;
notice that the segmentsPiP′

i are vertical, whereas the segmentsP′
i Pi+1 are horizontal. More generaly, a

path is a sequence of pointsP1, P′
1, . . . , Pk, P′

k such that, for somem≤ k, P1, P′
1, . . . , Pm, P′

m is a simple
path, and for alli > m, Pi = Pi−m andP′

i = P′
i−m. A circuit is a simple path such thaty′m = y1; when dealing

with circuits, we shall implicitly assume that the subscripts are treated modulom; so, for examplePm+1

is just P1. A point is a (self-)crossing pointof a simple path if and only if it is the intersection of two
segments, sayPiP′

i andP′
jPj+1; we also say that the path has a crossing at indices(i, j).

Clearly, visiting the border of a polyominoP counter-clockwise and starting from the highest vertex
of the leftmost edge, we identify a circuit without crossingpoints: we call it theboundaryof P and denote
it by P1 = A,P′

1,P2,P′
2, . . . ,Pm,P′

m (see Figure 1 (a)). Notice that ifP is a permutomino, thenm= n.
In particular we consider four special points in the boundary of any polyominoP: let A = P1 be the

highest vertex of the leftmost edge,B be the leftmost vertex of the lowest edge,C be the lowest vertex of
the rightmost edge,D be the rightmost of the highest edge (see Figure 1 (b)). Notice that, ifP is convex,
then the subsequence of vertices betweenA andB (B andC, C andD, D andP′

m, respectively) is a path
directed down/rightward (up/rightward, up/leftward, down/leftward, respectively); see Figure 1 (c).

2.2 Generating functions

Thegenerating function f(z) of the sequence{an}n is defined as [9]f (z) = ∑nanzn; it is well-known
that

z f′(z) = ∑
n

nanzn and f (z) ·g(z) = ∑
n

(

n

∑
k=0

anbn−k

)

zn,
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Fig. 1. (a) The boundary of a polyomino. (b) The extreme points of a polyomino. (c) The extreme points of a convex
polyomino.

whereg(z) = ∑nbnzn. Some examples of generating functions that we will need in the following are:

1√
1−4z

= ∑
n

(

2n
n

)

zn

1
1−4z

= ∑
n

4nzn.

As a consequence of the previous facts, we have that
n

∑
k=0

(

2k
k

)(

2(n−k)
n−k

)

= 4n. (1)

3 Permutominoes, permutations, and transform

In this section we illustrate the relationship between the set of permutominoes of sizen and the set

Πn = {(σ,τ) | σ,τ ∈ S(n),σ(x) 6= τ(x) for everyx, andσ(1) > τ(1)}.
Consider a permutominoP of sizen and letP1,P′

1,P2,P′
2, . . . ,Pn,P′

n be its boundary. By definition, for
anyz∈ {1, . . . ,n} there is exactly one indexi such thatPi andP′

i have abscissazand there is exactly one
index j such thatP′

j andPj+1 have ordinatez. Thus, a permutominoP of sizen uniquely determines a
pair of permutations(σ,τ) ∈ Πn (which we call thepermutation pairof P): σ(x) andτ(x) are defined
as the respective ordinates of the (unique) pointsPi andP′

i with abscissax. In particular, observe that
A = P1 = (1,σ(1)), B = (τ−1(1),1), C = (n,σ(n)), D = (τ−1(n),n).

Conversely, a pair(σ,τ) ∈ Πn does not always define a permutomino. However, one can always
consider the set of points (i ∈ {1, . . . ,n})

Ti = (xi ,τ(xi)) and Si = (xi ,σ(xi)),

where, for everyi < n,
x1 = 1, xi = σ−1(τ(xi−1)),

We define thepath of(σ,τ) as the pathS1,T1,S2,T2, . . . ,Sn,Tn. Notice that this path needs not be simple,
as Figure 2 (c) illustrates. However, if the 2n points are all distinct, the path is indeed a circuit with
exactly one vertical (and horizontal) segment for every abscissa (and ordinate), see Figure 2 (a); yet, the
circuit may contain crossing points (see Figure 2 (b)).



(a) (b) (c)

Fig. 2. (a) The permutomino of sizen = 7 defined byσ = (5,7,4,1,6,3,2) andτ = (4,5,1,2,7,6,3) (squares rep-
resentσ, whereas lozenges representτ). (b) The path ofσ = (3,2,1,4,7,5,6) andτ = (2,1,7,3,6,4,5), which does
not define a permutomino. (c) The path ofσ = (3,2,1,4,6,5,7) andτ = (2,1,3,7,5,4,6), which does not define a
permutomino of sizen = 7.

Remark 1.A pair of permutations inΠn is the permutation pair of a permutominoP if and only if its
path has exactly 2n distinct vertices and has no crossing points. In this case its path coincides with the
boundary ofP, that isSi = Pi andTi = P′

i for everyi.

We notice that this remark is actually the definition of permutomino as introduced in [6]. Indeed, our
definition of path of a pair of permutation recalls the geometric contruction used in [6], even though
there are some differences (for instance in the case of Figure 2 (c)).

We now introduce a mapFn : Πn → Φn whereΦn is the set of pairs of endofunctions of{1, . . . ,n}.
For any pair(σ,τ) ∈ Πn we setFn(σ,τ) = (v,h) where

v(1) = 1, v(i +1) = σ−1(τ(v(i)))

h(1) = τ(1), h(i +1) = τ(σ−1(h(i)))

for everyi ∈ {1, . . . ,n−1}. The pair(v,h) is called thetransformof (σ,τ); Figure 3 shows an example of
permutomino and the transform(v,h) of its permutation path(σ,τ). The transformFn has the following
geometric interpretation:v(i) is the abscissa of thei-th vertical edge along the path of(σ,τ), whereash(i)
is the ordinate of thei-th horizontal edge along the same path. Indeed, the following proposition holds:

Proposition 1. Let (σ,τ) be a pair of permutations, S1,T1,S2,T2, . . . ,Sn,Tn be its path and(v,h) =
Fn(σ,τ) be its transform. Then one has

Si = (v(i),h(i −1)) and Ti = (v(i),h(i)) (2)

for every i∈ {1, . . . ,n}, where we let h(0) = h(n) for the sake of simplicity.

Notice that the path goes rightwards (resp. leftwards) according to whetherv is increasing or decreasing
and goes upwards (resp. downwards) according to whetherh is increasing or decreasing (see Figure 3
for an example). Also observe that the functionsv andh need not to be permutations; for instance this is
the case for the permutation pair of Figure 2 (c).

The transform of the permutation pair of a convex permutomino has special properties, that can be
observed in Figure 3 (right). To illustrate them, we introduce the following definition.

Definition 1. The pair(v,h) ∈ Φn is said to beadmissiblewhenever(v,h) ∈ S(n)×S(n) and, setting
v∗ = v−1(1), h∗ = h−1(1), v∗ = v−1(n), and h∗ = h−1(n), one has

– 1 = v∗ ≤ h∗ < v∗ ≤ h∗,



– v is increasing in{1, . . . ,v∗} and decreasing in{v∗, . . . ,n},
– h is decreasing in{1, . . . ,h∗}, increasing in{h∗, . . . ,h∗}, decreasing in{h∗, . . . ,n}, with h(n) > h(1).

The set of admissible pairs inΦn shall be denoted byΦA
n .

This definition is justified by the following fact:

Proposition 2. Let (σ,τ) ∈ Πn be a pair of permutations. Then Fn(σ,τ) is admissible if and only if the
path of(σ,τ) is a circuit that can be decomposed into four subpaths directed, in this order, down/rightward,
up/rightward, up/leftward, down/leftward.

The previous proposition leads us to defineadmissiblea circuit that can be decomposed as in the state-
ment (see, for example, Figure 3 and 4), and to introduce the set

ΠA

n = {(σ,τ) ∈ Πn | the path of(σ,τ) is an admissible circuit}.

Indeed, the previous proposition can be extended as follows:

Proposition 3. The setsΠA
n andΦA

n are in bijection via Fn.

Proof. Proposition 2 implies thatFn(ΠA
n ) ⊆ ΦA

n ; we need to prove bijectivity. Given two permutations
(v,h) with v(1) = 1, set

σ(x) = h(v−1(x)−1) and τ(x) = h(v−1(x)).

Letting Fn(σ,τ) = (v′,h′), one can easily verify thatv(i) = v′(i) andh(i) = h′(i) by induction oni. For
uniqueness, it is sufficient to use the definition ofFn and Proposition 1. ⊓⊔

The preimage(σ,τ) ∈ ΠA
n of a (v,h) ∈ ΦA

n is called theantitransformof (v,h), and the path of(σ,τ) is
called theanticircuit of (v,h).

In particular, since convex permutominoes are admissible circuits, we obtain:

Corollary 1. If (σ,τ) is the permutation pair of a convex permutomino P, then its transform(v,h) is
admissible. Moreover, A= Sv∗ , B= Th∗ , C = Sv∗ and D= Th∗ .

Observe however that, in general, the converse of the previous corollary is not true, because an admissible
circuit may contain crossing points, as shown in Figure 4 (Left).

4 Crossing points

At this point, it should be clear that, if(σ,τ)∈ΠA
n , then either its path is a permutomino or it has crossing

points. Such points can ensue only from one of the following two cases: the up/rightward subpath inter-
sects the down/leftward subpath (crossing point of thefirst type, as in Figure 4), or the down/rightward
subpath intersects the up/leftward subpath (crossing point of thesecond type, as in Figure 5). Actually,
we will show that the crossing points do satisfy stronger conditions.

Lemma 1. Let (v,h) ∈ ΦA
n andP be its anticircuit. Then, the crossing points ofP (if any) are all of the

same type.

Proof. Let X be a crossing point of first type. Then the down/rightward subpath ofP is all included in
the square with vertices(1,1) andX; analogously, the up/leftward subpath ofP is all included in the
square with verticesX and(n,n). This implies that these subpaths never cross each other, soany other
crossing point must be of the first type. ⊓⊔



Fig. 3. (Left) A convex permutominoP. (Right) The diagram of the transform(v,h) (circles representh, whereas
crosses representv) of the permutation pair ofP.

v∗ h∗h∗

h(1)
h(n)

Fig. 4. (Left) An admissible circuit which is not a permutomino. (Right) The diagram of the pair of functions(v,h)
corresponding to the circuit (circles representh, whereas crosses representv).



Fig. 5. The anticircuit of(v,h), which is not a permutomino and has crossing points of the second type.

Now consider the sequence of crossing points ofP , ordered so that their abscissas are (strictly)
increasing. Clearly, the circuitP passes through all these points once in this order and then again in the
reverse order. Notice that also the ordinates turns out to beordered: if the crossing points are of the first
(resp. second) type, then they are strictly increasing (resp. decreasing).

For the sake of simplicity, thanks to Lemma 1, we now focus on admissible pairs whose anticircuit
P has only crossing points (if any) of the first type. The other case can be dealt with by simmetry. Under
this hypothesis, the crossing points ofP can be classified into two groups, as illustrated in Figure 6.

– A crossing pointX is UL if it is the intersection of anupwardsegmentSµTµ(whereh∗ < µ< v∗) with
a leftwardsegmentTλSλ+1(whereλ > h∗); in this case,X = (v(µ),h(λ)) by Proposition 1.

– A crossing pointX is RD if it is the intersection of arighward segmentTρSρ+1 (whereh∗ < ρ < v∗)
with a downwardsegmentSδTδ (whereδ > h∗); in this caseX = (v(δ),h(ρ)) by Proposition 1.

X = (v(µ), h(λ))

Sµ

Tµ

Sλ+1 Tλ

X = (v(δ), h(ρ))

Sδ

Tδ

Sρ+1Tρ

(a) (b)

Fig. 6. (a) A UL crossing point at indices(µ,λ); (b) A RD crossing point at indices(δ,ρ).

It is easy to see that the first crossing point ofP is UL, the last one is RD, whereas the inner ones
alternate. In particular this implies that the number of crossing points is always even. Thus, letting
X1,X2, . . . ,X2k−1,X2k be the ordered sequence of crossing points ofP , there exists a sequence of indices

µ1 ≤ ρ1 < µ2 ≤ ρ2 < · · · < µk ≤ ρk < δk ≤ λk < δk−1 ≤ ·· · < δ1 ≤ λ1



such that, for everyi = 1, . . . ,k,

X2i−1 = (v(µi),h(λi)) and X2i = (v(δi),h(ρi));

note that the crossing points with odd indices are UL whereasthose with even indices are RD. Since the
abscissa —and the ordinates— are increasing, we also have

v(µ1) < v(δ1) < v(µ2) < · · · < v(µk) < v(δk)

and
h(λ1) < h(ρ1) < h(λ2) < · · · < h(λk) < h(ρk).

Actually, the pointsXj ’s all lay on the diagonal with endpoints(1,1) and(n,n). (On the other hand,
if the crossing points are of the second type, it turns out that they all lay on the diagonal with endpoints
(1,n) and(n,1).) Indeed, we show thatv(µi) = h(λi) andv(δi) = h(ρi) for every i, that is, the previ-
ous chains of inequalities coincide. Consider any UL crossing pointX2i−1 = (v(µi),h(λi)), and the new
circuits (that, in general, may themselves contain crossing points):

S1,T1, . . . ,Sh∗ ,Th∗ , . . . ,Sµi ,X2i−1,Sλi+1,Tλi+1, . . . ,Sn,Tn

X2i−1,Tµi ,Sµi+1,Tµi+1 . . . ,Sv∗ ,Tv∗ , . . . ,Sh∗ ,Th∗ , . . . ,Sλi Tλi .

Observe that, by Corollary 1, the first circuit containsA andB and is included in the square with vertices
(1,1) andX2i−1, whereas the second circuit containsC andD and is included in the square with vertices
X2i−1 and(n,n). Also, by Proposition 1, the second circuit is the anticircuit of the restrictions ofv and
h to the set{µi , . . . ,λi} (up to suitable translations). Hence, such restrictions are bijections onto the
sets{v(µi), . . . ,n} and{h(λi), . . . ,n}, respectively, and hence one getsv(µi) = h(λi). Similarly, any RD
crossing pointX2i = (v(δi),h(ρi)) splits the circuitP into two circuits: the one included in the square
with endpoints(1,1) andX2i , and the other included in the square with endpointsX2i and(n,n). Thus,
one obtainsv(δi) = h(ρi) for everyi = 1, . . . ,k.

Hence, the crossing points split the circuitP into 2k+ 1 new circuitsP j , for j = 0, . . . ,2k (see
Figure 7). Each of them has no crossing point, thus it is the boundary of a convex polyomino. Actually,
reasoning as above, one can prove that eachP j is the boundary of the permutomino whose permutation
pair (σ j ,τ j ) is defined as follows (settingδ0 = 1, µk+1 = v∗, and up to suitable traslations of domains
and codomains):

– σ2i is the restriction ofσ to the domain{v(δi), . . . ,v(µi+1)} for everyi = 0,1, . . . ,k;
– τ2i is the restriction ofτ to the domain{v(δi), . . . ,v(µi+1)}, except forτ0(v(µ1))= v(µ1), τ2k(v(δk))=

v(δk), τ2i(v(δi)) = v(δi) for everyi = 1,2, . . . ,k, andτ2i(v(µi+1)) = v(µi+1), for everyi = 0,1, . . . ,k−
1;

– σ2i−1 is the restriction ofσ to the domain{v(µi), . . . ,v(δi)} for every i = 1,2. . . ,k, except for
σ2i−1(v(µi)) = v(µi) andσ2i−1(v(δi)) = v(δi);

– τ2i−1 is the restriction ofτ to the domain{v(µi), . . . ,v(δi)} for everyi = 1,2. . . ,k.

Intuitively, the pairs(σ j ,τ j ) are the restrictions of(σ,τ) to suitable subintervals of{1, . . . ,n}, except
for the interval endpoints in correspondence with crossingpoints. Notice that the permutominoes with
boundariesP0 andP2k are both directed-convex, while the other ones are parallelograms. So, we have
proved the following theorem.

Theorem 1. Let (v,h) ∈ ΦA
n andP be its anticircuit. Then, eitherP is the boundary of a convex per-

mutomino, orP has an even number2k of crossing points of the same type. In the latter case, either all
crossing points lay on the diagonal with endpoint(1,1) and(n,n), or they all lay on the diagonal with
endpoints(1,n) and(n,1). Moreover,P determines2k+1 new circuits, each of which is the boundary of
a convex permutomino: the2k−1 inner permutominoes are parallelogram, whereas the two outer ones
are directed-convex.
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Fig. 7.How the crossing points split a circuit into a sequence of permutominoes.

5 Counting convex permutominoes

Theorem 1 provides a precise characterization of the admissible pairs having crossing points. We will
call thembadpairs, since they do not define a permutomino. Hence, in orderto count the numberCn of
convex permutominoes of sizen, we first obtain the numberAn of admissible pairs and then the number
Bn of the bad ones. Our main result is hence given by a subtraction Cn = An−Bn.

To this aim, we recall that in [5] the authors succeeded in giving an explicit formula for counting the
number of some subclasses of convex permutominoes; more precisely, they proved that the numberdn

of directed-convex permutominoes with sizen is

dn =
1
2

(

2(n−1)

n−1

)

, (3)

whereas the number of parallelogram permutominoes of sizen equals the(n−1)-th Catalan number

pn = cn−1 =
1
n

(

2n−2
n−1

)

. (4)

We start by computing the number of admissible pairs:

Theorem 2. For every n≥ 2, the number of admissible pairs is

An =
n−2

∑
s=0

s

∑
t=0

t

∑
u=0

(

n−2
t

)(

n−2
u+s− t

)

.

Proof. By the definition of admissible pair, we first have to choose the valuesh∗, v∗ andh∗ such that
1 ≤ h∗ < v∗ ≤ h∗ ≤ n. Once these values are fixed, take any two subsets of{2, . . . ,n− 1}, sayV and
H, with cardinalitiesv∗ − 2 andh∗ − h∗ − 1, respectively. Let nowv be the unique permutation such



that v(1) = 1, v(v∗) = n, v({2, . . . ,v∗ − 1}) = V, with v increasing in such an interval, and decreasing
in the remaining interval{v∗ +1, . . . ,n}; similarly, leth be the unique permutation such thath(h∗) = 1,
h(h∗) = n, h({h∗+1, . . . ,h∗−1}) = H, with h increasing in such an interval, and decreasing (cyclically)
in the remaining interval{h∗ + 1, . . . ,n}∪ {1, . . . ,h∗ − 1}. This is clearly an admissible pair, and it is
uniquely determined by the choice ofV andH. So, the number of admissible pairs is

An = ∑
1≤h∗<v∗≤h∗≤n

(

n−2
v∗−2

)(

n−2
h∗−h∗−1

)

.

Substitutings= h∗−2, t = v∗−2 andu = v∗−h∗−1 in the previous summation, we obtain the result.
⊓⊔

As proved in a separate work [1], the previous summation turns out to be equal to

2n4n−3− (n−2)

(

2(n−2)

n−2

)

. (5)

As shown in the previous section, bad admissible pairs can bedepicted as particular sequences of
parallelogram and direct convex permutominoes. We proceedwith two counting lemmata that will lead
to an explicit formula forBn in Theorem 3.

Lemma 2. For every m≥ 0, we have

∑
k

∑
t1,...,t2k−1>0

t1+···+t2k−1=m+1

ct1 · · ·ct2k−1 =

(

2m
m

)

.

Proof. The Catalan numberct counts the number of trees1 with 2t edges whose internal nodes have
exactly two children. So, the left-hand side of the formula counts the number of ordered forests made by
an odd number of trees, each being non-trivial and with all internal nodes having two children exactly,
where the overall number of edges is 2m+2.

The setF2m+2 of such forests is in bijection with the setT2m+2 of the trees with 2m+ 2 edges, all
internal nodes with exactly two children, and the root with an even number of children whose half is
odd. Indeed, letT1, . . . ,T2k−1 be any forest inF2m+2 and consider, for everyi, the two subtreesT ′

i and
T ′′

i rooted at the two children of the root ofTi . The corresponding tree inT2m+2 is obtained by attaching
T ′

1,T
′′
1 , . . . ,T ′

2k−1,T
′′
2k−1 at a new root. Conversely, every tree inT2m+2 can be obtained from a suitable

forest inF2m+2. Thus, the result is proved if we show that the cardinality ofT2m+2 is exactly
(2m

m

)

.
This follows from the general formula of [3], withR= {2,6,10,14, . . .}, N = {2} andL = {1}, that

yields the generating functionT(z) = 1+z2/
√

1−4z2 of the sequence{|Tm|}. SinceG(z) = 1/
√

1−4z
is the generating function for the central binomial coefficient

(2m
m

)

, we obtain that

T(z) = 1+z2G(z2) = 1+ ∑
m≥0

(

2m
m

)

z2m+2.⊓⊔

Lemma 3. For every m≥ 0, we have

m

∑
s=0

4s
(

2(m−s)
m−s

)

=

(

2m
m

)

(2m+1).

1 Here and henceforth, bytreewe mean ordered rooted tree.



Proof. We prove that the generating function for the left-hand sideis the same as the one for the right-
hand side. The left-hand side is a convolution, whose generating function is the product of 1/(1− 4z)
and 1/

√
1−4z, i.e.,(1−4z)−3/2. For the right-hand side, notice that

∞

∑
m=0

(2m+1)

(

2m
m

)

zm = 2
∞

∑
m=0

m

(

2m
m

)

zm+
∞

∑
m=0

(

2m
m

)

zm =

= 2z
d
dz

(

1√
1−4z

)

+
1√

1−4z
= (1−4z)−3/2.⊓⊔

Theorem 3. For every n≥ 3, the number of admissible pairs that do not define a permutomino is

Bn = (n−1)

(

2(n−2)

n−2

)

−4n−2.

Proof. By Theorem 1, if an admissible pair does not define a permutomino, then it defines a sequence of
2k+1 permutominoesP0,P1, . . . ,P2k whereP0 andP2k are direct-convex andP1, . . . ,P2k−1 are parallel-
ogram. Lettingni be the size ofPi , we have∑i ni = n+2k, since each crossing pointXi (i ∈ {1, . . . ,2k})
coincides with both the upper-rightmost corner ofPi−1 and lower-leftmost corner ofPi . Hence the num-
ber of admissible pairs that do not define a permutomino are

Bn = 2 ·
⌊n/2⌋
∑
k=1

∑
n0,...,n2k≥2

n0+···+n2k=n+2k

dn0 pn1 · · · pn2k−1dn2k

wheredn andpn are the numbers of direct-convex and parallelogram permutominoes of sizen, respec-
tively. The factor 2 accounts for the symmetry between crossing points of the first and second type. Now,
setr = n0−1,s= r−1+n2k andti = ni −1 for everyi ∈ {1, . . . ,2k−1}. Recalling Equations (3) and (4),
we have

Bn = 2 ·
n−2

∑
s=2







⌊n/2⌋
∑
k=1

∑
t1,...,t2k−1≥1

t1+···+t2k−1=n−1−s

ct1 · · ·ct2k−1







(

1
4

s−1

∑
r=1

(

2r
r

)(

2(s− r)
s− r

)

)

.

Applying Lemma 2 withm= n−2−sand Equation (1) withn = s, we obtain

Bn =
1
2
·

n−2

∑
s=2

(

2(n−s−2)

n−s−2

)(

4s−2

(

2s
s

))

=

=
1
2
·

n−2

∑
s=0

(

2(n−s−2)

n−s−2

)(

4s−2

(

2s
s

))

+
1
2

(

2(n−2)

n−2

)

=

=
1
2
·

n−2

∑
s=0

(

2(n−s−2)

n−s−2

)

4s−
n−2

∑
s=0

(

2(n−s−2)

n−s−2

)(

2s
s

)

+
1
2

(

2(n−2)

n−2

)

.

Now, applying Lemma 3 withm= n−2 to the first summand, and using again Equation (1), we obtain
the result. ⊓⊔

From Theorems 2 and 3 and equation (5), we are now able to show the main result.

Corollary 2. The number of convex permutominoes of size n≥ 2 is

Cn = An−Bn = 2(n+2)4n−3− (2n−3)

(

2(n−2)

n−2

)

The first few terms of the sequencesAn, Bn andCn are given in Table 1.



Table 1.The numberAn of admissible pairs, the numberBn of admissible pairs with crossings and the numberCn

of convex permutominoes of sizen.

n 2 3 4 5 6 7 8 9 10

An 1 4 20 100 488 2324 10840 49704 224720
Bn 0 0 2 16 94 488 2372 11072 50294
Cn 1 4 18 84 394 1836 8468 38632 174426

6 Conclusions

In this paper we have presented a novel technique to study permutominoes: we defined the transform of
a pair of permutations that can be thought of as a sort of duality. More precisely, even though the set
of pairs of permutations(σ,τ) defining a convex permutomino is difficult to be described directly, its
image through the transformFn can be fully characterized. As a consequence, we were able toobtain
an explicit formula for the numberCn of convex permutominoes (Corollary 2). We point out that a
recursive generation technique (namely, the ECO method) has been independently proposed in [4], where
an equivalent formula counting the number of convex permutominoes has been found.

We conclude remarking that the generating function of{Cn}n is algebraic. Hence, it would be inter-
esting to investigate if there is a natural unambiguous context-free language which is in bijection with
the class of convex permutominoes.
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