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Abstract. Permutominoes are polyominoes defined by suitable pairsrofigtations. In this paper

we provide a formula to count the number of convex permutoesrof given perimeter. To this aim
we define the transform of a generic pair of permutations, vegacterize the transform of any pair
defining a convex permutomino, and we solve the countinglenolin the transformed space.

1 Introduction

A polyomino (also known as lattice animal) is a finite collentof square cells of equal size arranged
with coincident sides. In this paper we consider a specescbf polyominoes, namely the permutomi-
noes, that we define in a purely geometric way. Actually, grent“permutomino” arises from the fact
that this object can be defined by a diagram on the plane rapiieg a pair of permutations. Such
diagrams were introduced in [8] as a tool to study Schubeietias and used in [6] (where the term
“permutaomino” appeared for the first time) and [7] in redatto Kazhdan-Lusztig R-polynomials.

Counting the number of polyominoes and permutominoes ist@mndasting combinatorial problem,
still open in its more general form; yet, for some subclasgégmlyominoes, exact formulae are known.
For instance, the number of convex polyominoes (i.e., wirdsesection with any vertical or horizontal
line is connected) of given perimeter has been obtained]inRereas the enumeration problem for
some subclasses of convex permutominoes has been solvgd lim this paper, we provide an explicit
formula for the number of convex permutominoes of a givernpeter.

Our counting technique is based on two basic facts. Firstbibundary of every convex permu-
tomino can be decomposed into four subpaths describingidgrotder, a down/rightward, up/rightward,
up/leftward, down/leftward stepwise movement. Secontgéah abscissa (ordinate) there is exactly one
vertical (horizontal) segment in the boundary with thatrdamate. Actually, these two constraints hold
not only for the boundary of convex permutominoes, but fargér class of circuits we call admissible:
in Section 3 we describe admissible circuits and we obtagir tiumberas, in Section 5. In Section 4
we characterize admissible circuits that do not define a penmino: again we obtain their numbet,
in Section 5. As a consequence, we get the number of convexp@minoes as the differencg, — %,.

2 Preliminaries

In this section, we shall recall some basic definitions agerties of polyominoes, permutominoes and
generating functions.

2.1 Polyominoes and permutominoes

A cell is a closed subset d®? of the form [a,b] x [a+ 1,b+ 1], wherea,b € Z; we shall identify
such a cell with the paifa,b). Let us define a binary relation of adjacencybetween cells by letting
(a,b) ~ (@,0) ifand only ifa= & and|b—b/| =1, orjla—&| =1 andb = b'. A subsetP of R? is a
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polyominoif and only if it is a finite nonempty union of cells that is cauted by adjacency, i.e., such
thatif (a,b), (a',b’) € P then there existai,b1),.. ., (ak,bk) € P such tha(a,b) = (a1,b1) ~ (az,bz) ~
-+~ (ak, bk) = (d,b'). See Figure 1 (a) for an example. A polyomino is defined up aadlations;
without loss of generality, we assume that the lowest leftrwertex of the mininal bounding rectangle
of the polyomino is placed at the poifit, 1).

Special types of polyominodare the following:

P is row-convexf and only if (a,b), (a’,b) e Panda < a’ <& imply (a”,b) € P;

P is column-convek and only if (a,b), (a,b’) € Pandb <b” <b’imply (a,b”) € P;

P is convexf and only if it is both row- and column-convex;

P is directedif and only if it contains at least one of the corner cells sfiitinimal bounding rectan-
gle;

— P is parallelogramif and only if it is convex and contains at least a pair of opggosorner cells of
its minimal bounding rectangle (e.g., both the lower-lefdl apper-right cells).

The (topological) border of a polyomiris a disjoint union of simple closed curves; in particulfr, i
there is only one curve, we say tiahasno holesall polyominoes in this work will have no holes. The
border is a simple closed curve made of alternating veréiodl horizontal nontrivial segments whose
endpoints Yerticed have integral coordinates; conversely, every such a dloseve is the border of a
polyomino without holes, so we shall freely identify polymmes with their borders.

We say thaP is apermutomino of size ifiand only if its minimal bounding rectangle is a square of
sizen—1, and the border d? has exactly one vertical segment of abscisaad one horizontal segment
of ordinatez, for everyze {1,...,n}. Notice that a convex permutomino of sizbas perimeter g —1).

In order to handle polyominoes we introduce the followindirdgons. A (stepwiselsimple pathis
a sequenc®; = (x1,y1), P; = (X, Y1), Po = (%2,¥2), Po = (%5, Y5) .., Pm= (Xm,Ym), Pm = (X, Ym) Of
distinct points with integer coordinates such that, for al{1,...,m}, x, = X, andy, =y 1 if i <m;
notice that the segmenBP’ are vertical, whereas the segmeR{B 1 are horizontal. More generaly, a
pathis a sequence of poinB, P, ..., R, P such that, for somen <k, Py, P/, ..., Pn, Py is a simple
path, and forall >m, R =R _ynandP =P _,,. Acircuit is a simple path such thg, = y1; when dealing
with circuits, we shall implicitly assume that the substgigre treated modulm; so, for examplé>y; 1
is justPy. A point is a (self-grossing pointof a simple path if and only if it is the intersection of two
segments, saly P/ andePj+1; we also say that the path has a crossing at indicés

Clearly, visiting the border of a polyomir®counter-clockwise and starting from the highest vertex
of the leftmost edge, we identify a circuit without crosspuaints: we call it thddoundaryof P and denote
itby P =A,P{,P2,P,,....,Pm, P, (see Figure 1 (a)). Notice thatkfis a permutomino, them = n.

In particular we consider four special points in the bougddrany polyominoP: let A= P; be the
highest vertex of the leftmost eddgbe the leftmost vertex of the lowest ed@ehe the lowest vertex of
the rightmost edgd) be the rightmost of the highest edge (see Figure 1 (b)). Hdtiat, ifP is convex,
then the subsequence of vertices betwaemdB (B andC, C andD, D andP;, respectively) is a path
directed down/rightward (up/rightward, up/leftward, doleftward, respectively); see Figure 1 (c).

2.2 Generating functions

The generating function (z) of the sequencéan}n is defined as [9]f (2) = T,anZ"; it is well-known
that

zf(z =% naZ'  and f(29-9(2)=3} (i anbnk> 2z
n n \k=0
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Fig. 1. (a) The boundary of a polyomino. (b) The extreme points oflggraino. (c) The extreme points of a convex
polyomino.

whereg(z) = ¥,bnz". Some examples of generating functions that we will neetliérfollowing are:

1 2n
e A
V1-4z Z ( n )
1
=5 4"2.
1-4z Z
As a consequence of the previous facts, we have that

20 (0d) = ®

3 Permutominoes, permutations, and transform

In this section we illustrate the relationship between #teo$ permutominoes of sizeand the set
Mh={(0,1) | 0,1 € S(n),0(x) # 1(x) for everyx, anda(1) > 1(1)}.

Consider a permutomin® of sizen and letP;,P{, P>, P, ..., Py, P} be its boundary. By definition, for
anyze {1,...,n} there is exactly one indexsuch thaf andP/ have abscissaand there is exactly one
index j such thalPJf andPj1 have ordinate. Thus, a permutominB of sizen uniquely determines a
pair of permutationgo, T) € N, (which we call thepermutation pairof P): a(x) andt(x) are defined
as the respective ordinates of the (unique) poifitand P’ with abscissa. In particular, observe that
A=P;=(1,0(1),B=(171(1),1),C= (n,6(n)), D= (171(n),n).

Conversely, a paifo,1) € N, does not always define a permutomino. However, one can always
consider the set of points € {1,...,n})

Ti=(,t(x)) and §=(x,0(x)),
where, for every < n,
xi=1, x=0}1t(x1)),

We define thepath of(o,T) as the patls;, T1, S, T2, . .., Sy, Tn. Notice that this path needs not be simple,

as Figure 2 (c) illustrates. However, if tha points are all distinct, the path is indeed a circuit with

exactly one vertical (and horizontal) segment for everycisa (and ordinate), see Figure 2 (a); yet, the
circuit may contain crossing points (see Figure 2 (b)).
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Fig. 2. (a) The permutomino of size= 7 defined byo = (5,7,4,1,6,3,2) andt = (4,5,1,2,7,6,3) (squares rep-

not define a permutomino. (c) The path@f (3,2,1,4,6,5,7) andt = (2,1,3,7,5,4,6), which does not define a
permutomino of size=7.

Remark 1.A pair of permutations i1, is the permutation pair of a permutomifaf and only if its
path has exactlyr2distinct vertices and has no crossing points. In this caspath coincides with the
boundary ofP, that is§ = P andT; = P for everyi.

We notice that this remark is actually the definition of petomino as introduced in [6]. Indeed, our
definition of path of a pair of permutation recalls the geameatontruction used in [6], even though
there are some differences (for instance in the case of &@(c)).

We now introduce a map, : N, — ®, where®, is the set of pairs of endofunctions ff,...,n}.
For any pair(o,T) € N, we setky(o,T) = (v,h) where

V(1) =1, v(i+1) = o Yr(v(i))
h(1) = t(1), h(i+1) =1(c~1(h(i)))

foreveryi € {1,...,n—1}. The pair(v, h) is called thearansformof (o, 1); Figure 3 shows an example of
permutomino and the transforfw h) of its permutation patlio,t). The transfornt, has the following
geometric interpretationi) is the abscissa of theth vertical edge along the path @, 1), wherea#(i)

is the ordinate of théth horizontal edge along the same path. Indeed, the faligwroposition holds:

Proposition 1. Let (0,T) be a pair of permutations, 1ST1, S, To, ..., S, Ty be its path and(v,h) =
Fn(0,T) be its transform. Then one has

S =(v(i),h(i—1)) and T=(v(i),h(i)) 2)
for everyic {1,...,n}, where we let (D) = h(n) for the sake of simplicity.

Notice that the path goes rightwards (resp. leftwards) @licg to whethew is increasing or decreasing
and goes upwards (resp. downwards) according to whétieemcreasing or decreasing (see Figure 3
for an example). Also observe that the functierandh need not to be permutations; for instance this is
the case for the permutation pair of Figure 2 (c).

The transform of the permutation pair of a convex permutanhias special properties, that can be
observed in Figure 3 (right). To illustrate them, we introdihe following definition.

Definition 1. The pair(v,h) € @, is said to beadmissiblewhenever(v,h) € S(n) x S(n) and, setting
v, =v (1), h, =h71(1), v: = v-1(n), and i = h~1(n), one has

- 1=v,<h,<Vv'<h*,



— visincreasing in{1,...,v*} and decreasing ifv*,...,n},
— hisdecreasingifl,...,h.}, increasing in{h,,...,h*}, decreasing i{ h*,...,n}, with h(n) > h(1).

The set of admissible pairs @y, shall be denoted b .
This definition is justified by the following fact:

Proposition 2. Let (g,1) € My be a pair of permutations. Then,(©,1) is admissible if and only if the
path of(o, 1) is a circuit that can be decomposed into four subpaths didh this order, down/rightward,
up/rightward, up/leftward, down/leftward.

The previous proposition leads us to defatmissiblea circuit that can be decomposed as in the state-
ment (see, for example, Figure 3 and 4), and to introduceghe s

N& = {(o,1) € My | the path of(o, 1) is an admissible circujt
Indeed, the previous proposition can be extended as fallows

Proposition 3. The set$1¥ and®Z are in bijection via k.

Proof. Proposition 2 implies thef,(N<) C ®; we need to prove bijectivity. Given two permutations
(v,h) with v(1) = 1, set

o(x)=h(vix)—1) and t(x)=h(v"1(x)).

Letting Fn(o,T) = (V,H), one can easily verify thati) = V(i) andh(i) = h'(i) by induction oni. For
uniqueness, it is sufficient to use the definitiorFpfand Proposition 1. O

The preimagéo, 1) € M of a(v,h) € ®7 is called theantitransformof (v, h), and the path ofo, 1) is
called theanticircuit of (v, h).

In particular, since convex permutominoes are admissibieits, we obtain:

Corollary 1. If (0,1) is the permutation pair of a convex permutomino P, then asgform(v,h) is
admissible. Moreover, AS,,, B=T,,C=S; and D= Tj:-.

Observe however that, in general, the converse of the pregarollary is not true, because an admissible
circuit may contain crossing points, as shown in Figure 4tjLe

4 Crossing points

At this point, it should be clear that, (&, 1) € [, then either its path is a permutomino or it has crossing
points. Such points can ensue only from one of the followimg tases: the up/rightward subpath inter-
sects the down/leftward subpath (crossing point offits¢ type as in Figure 4), or the down/rightward
subpath intersects the up/leftward subpath (crossing pbithe second typeas in Figure 5). Actually,
we will show that the crossing points do satisfy strongerditons.

Lemma 1. Let(v,h) € @2 and? be its anticircuit. Then, the crossing points®{if any) are all of the
same type.

Proof. Let X be a crossing point of first type. Then the down/rightwardosub of ? is all included in
the square with verticegl, 1) and X; analogously, the up/leftward subpath ®fis all included in the
square with verticeX and(n,n). This implies that these subpaths never cross each othanysother
crossing point must be of the first type. O
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Fig. 3. (Left) A convex permutomind®. (Right) The diagram of the transfor(w,h) (circles represert, whereas
crosses represent of the permutation pair dP.
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Fig. 4. (Left) An admissible circuit which is not a permutomino. ¢Rt) The diagram of the pair of functiortg h)
corresponding to the circuit (circles represbnivhereas crosses represent



Fig. 5. The anticircuit of(v, h), which is not a permutomino and has crossing points of thersktype.

Now consider the sequence of crossing pointsPofordered so that their abscissas are (strictly)
increasing. Clearly, the circui? passes through all these points once in this order and than egthe
reverse order. Notice that also the ordinates turns out tordbered: if the crossing points are of the first
(resp. second) type, then they are strictly increasing(r@screasing).

For the sake of simplicity, thanks to Lemma 1, we now focus dmiasible pairs whose anticircuit
P has only crossing points (if any) of the first type. The otteseccan be dealt with by simmetry. Under
this hypothesis, the crossing points®tan be classified into two groups, as illustrated in Figure 6.

— Acrossing poini is UL if it is the intersection of ampwardsegmeng, Ty (whereh, < p < v*) with
aleftward segment, S, 1 (whereA > h*); in this caseX = (v(u),h(A)) by Proposition 1.

— Acrossing poiniX is RDIif it is the intersection of aighward segmenil;S,1 (Whereh, < p < v¥)
with adownwardsegmen&sTs (whered > h*); in this caseX = (v(d),h(p)) by Proposition 1.
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Fig. 6. (a) A UL crossing point at indicegi A); (b) A RD crossing point at indice®, p).

It is easy to see that the first crossing point®fis UL, the last one is RD, whereas the inner ones
alternate. In particular this implies that the number ofssing points is always even. Thus, letting
X1,X2,. .., Xok_1,Xok be the ordered sequence of crossing point8,ahere exists a sequence of indices

M<pr<p<p2< - <PSPk<HK <A< 1< <01 <M



such that, for every=1,... Kk,
Xai—1=(v(ki),h(Ai)) and X = (V(&i),h(pi));

note that the crossing points with odd indices are UL whetlease with even indices are RD. Since the
abscissa —and the ordinates— are increasing, we also have

V(H1) < V(1) < V(H2) < -+ < V() < V(3)

and
h(A1) <h(p1) <h(A2) <--- < h(Ak) < h(pk).

Actually, the pointsX;’s all lay on the diagonal with endpoints, 1) and(n,n). (On the other hand,
if the crossing points are of the second type, it turns oditttiney all lay on the diagonal with endpoints
(1,n) and(n,1).) Indeed, we show that(y) = h(Ai) andv(d;) = h(p;) for everyi, that is, the previ-
ous chains of inequalities coincide. Consider any UL crasgointXyi_1 = (V(l4),h(Ai)), and the new
circuits (that, in general, may themselves contain crgssoints):

S.|.7T15"'7SW*7Th*7"' aSJUXZi*L&\i-ﬁ-l?T)\i-&-l)"'7S"I7Tn
X2i—laTM7$h+1aTM+1"'78/*7Tv*a"'7s1*aTh*v"'7S\iT)\i'

Observe that, by Corollary 1, the first circuit contaandB and is included in the square with vertices
(1,1) andXyi_1, whereas the second circuit conta@andD and is included in the square with vertices
Xzi—1 and(n,n). Also, by Proposition 1, the second circuit is the antidircdi the restrictions o¥ and

h to the set{l,...,Ai} (up to suitable translations). Hence, such restrictiomskdjections onto the
sets{v(l),...,n} and{h(Ai),...,n}, respectively, and hence one getg;) = h(A;). Similarly, any RD
crossing poiniXy = (v(6;),h(pi)) splits the circuit? into two circuits: the one included in the square
with endpointg(1,1) and Xy, and the other included in the square with endpaiitsand (n,n). Thus,
one obtainy(&;) = h(p;) for everyi =1,... k.

Hence, the crossing points split the circditinto 2k + 1 new circuits®;, for j = 0,...,2k (see
Figure 7). Each of them has no crossing point, thus it is thendary of a convex polyomino. Actually,
reasoning as above, one can prove that eab the boundary of the permutomino whose permutation
pair (0j,Tj) is defined as follows (settindy = 1, W1 = Vv, and up to suitable traslations of domains
and codomains):

— 0y is the restriction o to the domain{v(&;), ..., v(i+1)} for everyi =0,1,....k;
— Ty is the restriction of to the domaiq v(&;), ..., v(Mi+1) }, exceptforto(v(pa)) = V(H1), Tak(V(dk)) =
v(8k), T2i (V(&)) = v(&) foreveryi =1,2,... k, andty (V(li11)) = V(Mi+1), foreveryi=0,1,... . k—

— 01 is the restriction ofg to the domain{v(l),...,v(&)} for everyi = 1,2... k, except for
02i-1(V(W)) = V() andozi-1(v(&i)) = (&),
— Tgi_1 is the restriction of to the domain{v(l),...,v(d)} foreveryi=1,2... k.

Intuitively, the pairs(aj,t;) are the restrictions ofo, 1) to suitable subintervals dfl,...,n}, except
for the interval endpoints in correspondence with crosgioigits. Notice that the permutominoes with
boundariesPy and Py are both directed-convex, while the other ones are paogliains. So, we have
proved the following theorem.

Theorem 1. Let (v,h) € ®% and ? be its anticircuit. Then, eithe® is the boundary of a convex per-
mutomino, orP has an even numbek of crossing points of the same type. In the latter casegedh
crossing points lay on the diagonal with endpojfit1) and (n,n), or they all lay on the diagonal with
endpointg1,n) and(n,1). Moreover,? determinek+ 1 new circuits, each of which is the boundary of
a convex permutomino: ttzk — 1 inner permutominoes are parallelogram, whereas the tweioomhes
are directed-convex.
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Fig. 7. How the crossing points split a circuit into a sequence ofrpegominoes.

5 Counting convex permutominoes

Theorem 1 provides a precise characterization of the adbtégsairs having crossing points. We will
call thembad pairs, since they do not define a permutomino. Hence, in daodesunt the numbeg;, of
convex permutominoes of sizgwe first obtain the numbew;, of admissible pairs and then the number
P, of the bad ones. Our main result is hence given by a subtreetie= .o, — %.

To this aim, we recall that in [5] the authors succeeded iingian explicit formula for counting the
number of some subclasses of convex permutominoes; mors@lse they proved that the numbey
of directed-convex permutominoes with sizés

1/2(n-1)
= — 3
a=3(*n 1) @
whereas the number of parallelogram permutominoes ofrserpials thén — 1)-th Catalan number
1/2n-2
pn—Cn—l—ﬁ<n_1)~ (4)

We start by computing the number of admissible pairs:

Theorem 2. For every n> 2, the number of admissible pairs is

n-2s t
n—2 n—2
A= 2 25()h)
n sZmZouZo t u+s—t
Proof. By the definition of admissible pair, we first have to choosehluesh,, v andh* such that

1< h, < v* < h* <n. Once these values are fixed, take any two subsef2,of.,n— 1}, sayV and
H, with cardinalitiesv* — 2 andh* — h, — 1, respectively. Let nhow be the unique permutation such



thatv(1) = 1, v(v*) =n, v({2,...,v* — 1}) =V, with v increasing in such an interval, and decreasing
in the remaining intervav* + 1,...,n}; similarly, leth be the unique permutation such théh.) = 1,
h(h*) =n, h({h.+1,...,h*—1}) = H, with hincreasing in such an interval, and decreasing (cyclitally
in the remaining interva{h*+1,...,n} U{1,...,h, — 1}. This is clearly an admissible pair, and it is
uniguely determined by the choice\éfandH. So, the number of admissible pairs is

n—2 n—2
o= ( )( * )
lSh*<vz*§h*§n vi—2)\h*—h,—1

Substitutings= h* — 2,t =v* — 2 andu = v* — h, — 1 in the previous summation, we obtain the result.

O
As proved in a separate work [1], the previous summatiorstotrt to be equal to
_ 2(n—2)
2n4"3_(n-2 : 5
- -2 (%0 2) ©)

As shown in the previous section, bad admissible pairs casepéted as particular sequences of
parallelogram and direct convex permutominoes. We prouéghdiwo counting lemmata that will lead
to an explicit formula for%, in Theorem 3.

Lemma 2. For every m> 0, we have

z GG — (Zm)
Z tg,lo_1>0 ! At m)

t et =m+1

Proof. The Catalan numbes; counts the number of treksvith 2t edges whose internal nodes have
exactly two children. So, the left-hand side of the formwdarts the number of ordered forests made by
an odd number of trees, each being non-trivial and with alirimal nodes having two children exactly,
where the overall number of edges im2 2.

The setfom.2 of such forests is in bijection with the s, of the trees with &+ 2 edges, all
internal nodes with exactly two children, and the root withewen number of children whose half is
odd. Indeed, leTy,..., Tx_1 be any forest infom:2 and consider, for every the two subtree¥ and
T rooted at the two children of the root ®f The corresponding tree iy, 2 is obtained by attaching
T, T,...., T3 1, Tk, at a new root. Conversely, every treedpin.» can be obtained from a suitable
forest in Fomio. Thus, the result is proved if we show that the cardinalitgsf, » is exactly(znT).

This follows from the general formula of [3], witR= {2,6,10,14,...}, N = {2} andL = {1}, that
yields the generating functioh(z) = 1+ 72/v/1— 42 of the sequenc€| 7| }. SinceG(z) = 1/v/1—4z
is the generating function for the central binomial coeﬁiﬂi(zr;]“), we obtain that

B B 2m 2
T(2=1+2GZ) =1+ m;)( m)zZm+ .0
Lemma 3. For every m> 0, we have
if(z(m_ S)> . (2”‘) (2m+1).
£ m-—s m

1 Here and henceforth, hyeewe mean ordered rooted tree.



Proof. We prove that the generating function for the left-hand sdéie same as the one for the right-
hand side. The left-hand side is a convolution, whose géingréunction is the product of (1 — 4z)
and 1/v1I—4z i.e.,(1—42)~%2. For the right-hand side, notice that

2 ()2 =22, () 2, ()=

m=0
d 1 1
=27— =(1-42%2n
Zdz<\/1—4z>+\/1—4z ( 2

Theorem 3. For every n> 3, the number of admissible pairs that do not define a permutoisi

B = (N—1) (2(” B 2)) —42,

n-2

Proof. By Theorem 1, if an admissible pair does not define a permurtojthen it defines a sequence of
2k+ 1 permutominoe®y, P1, .. ., Pk WherePy and Py are direct-convex anfy, ..., Py_1 are parallel-
ogram. Lettingn; be the size off;, we havey; nj = n+ 2k, since each crossing poikt (i € {1,...,2k})
coincides with both the upper-rightmost cornerfof; and lower-leftmost corner @f;. Hence the num-
ber of admissible pairs that do not define a permutomino are

[n/2]
Pn=2- Z z Ong Py * -+ Prgyc_; Ay

k=1 ng,---Nok=>2
no++Ng=n+2k

whered, and p, are the numbers of direct-convex and parallelogram penmmiuizes of sizen, respec-
tively. The factor 2 accounts for the symmetry between énggsoints of the first and second type. Now,
setr =np—1,s=r—1+nyandt =n—1foreveryi € {1,...,2k—1}. Recalling Equations (3) and (4),
we have
n—-2 n/2J 1S—1 or Z(S—r)
Bn=2- = .
" 22 tg e t2k 1>1 " G <4r21 ( r ) ( S—f ))
t1+ Hog_q1=n-1-s

Applying Lemma 2 withm = n— 2 — sand Equation (1) witim = s, we obtain
() ((3)-

() (e=(3) () -

”g: (2(nn SS 22)) o ”g (2(nn_—ss_—22)) (233) N % (2(nn_— 22))

Now, applying Lemma 3 wittm = n— 2 to the first summand, and using again Equation (1), we obtain
the result. O

z%n:

NIk NP NI

From Theorems 2 and 3 and equation (5), we are now able to $teomain result.

Corollary 2. The number of convex permutominoes of sizeis

G = o — P = 2(n+2)4"°— (2n-3) (2:]—_ 22)>

The first few terms of the sequencef, %4, and%;, are given in Table 1.



Table 1. The numbere, of admissible pairs, the numbéf, of admissible pairs with crossings and the nuniggr
of convex permutominoes of sire

n|234567 8 9 10

/|1 4 20 100 488 2324 10840 49704 224720
%$n00 2 16 94 488 237211072 50294
%n|1418 84 394 1836 8468 38632 174426

6 Conclusions

In this paper we have presented a novel technigue to studyyteminoes: we defined the transform of
a pair of permutations that can be thought of as a sort of guMiore precisely, even though the set
of pairs of permutation$o, 1) defining a convex permutomino is difficult to be describeckdliy, its
image through the transforf, can be fully characterized. As a consequence, we were aldbtéin
an explicit formula for the numbe#;,, of convex permutominoes (Corollary 2). We point out that a
recursive generation technique (namely, the ECO metha®)éen independently proposed in [4], where
an equivalent formula counting the number of convex permitoes has been found.

We conclude remarking that the generating functioféf}, is algebraic. Hence, it would be inter-
esting to investigate if there is a natural unambiguouseodsftee language which is in bijection with
the class of convex permutominoes.
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