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Floyd’s Operator Precedence languages (OPLs) were originally introduced to support
deterministic parsing of programming languages [11]; then, interest in them decayed
for several decades, probably due to the advent of more expressive grammars, such as
LR ones which also allow for efficient deterministic parsing.

Recently, however, we renewed our interest in this family of languages on the basis
of two major properties thereof: 1) their “locality property”, i.e., the fact that partial
strings can be parsed independently of the context in which they occur within a whole
string; this enables more effective parallel and incremental parsing techniques than for
other deterministic languages [3,4]; and 2) the fact that, to the best of our knowledge,
OPLs are the largest family closed w.r.t. Boolean operations, concatenation, Kleene *
and other classical operations [7]; furthermore they are recognized by a peculiar au-
tomata family [12] and are characterized in terms of classical monadic second order
(MSO) logic [13]. This latter property entitles OPLs as a best candidate for extending
the application of powerful verification techniques such as model-checking far beyond
the original class of regular languages and even other recent families such as Visibly
Pushdown Languages (VPLs) [2] which are strictly contained within OPLs too.

In this paper we introduce (more precisely, resume) a subclass of OPLs, namely
free languages (FrLs) which were defined in [9,8] with the main motivation of grammar
inference. FrLs constitute a kind of algebra within the structure defined by any given
operator precedence matrix (OPM) [8]. Besides briefly outlining a “specialized” version
of automata explicitly tailored for FrLs, we offer a new logic characterization in terms
of first-order logic, as opposed to the traditional but more complex one in terms of
MSO logic. FrLs however, lose some closure properties and have some “distinguishing”
limits in terms of generative power, which nevertheless covers various relevant and
heterogeneous cases: thus, they better lend themselves to act as “basic skeleton” for
describing the structural part of a language to be complemented either with a suitable
intersection with “regular control” or with additional restrictions formalized in terms
of first-order properties conjuncted with the original ones associated with a grammar
(FrG), somewhat in the spirit of the classical Chomsky-Schutzenberger characterization
of CF languages.

Basic definitions

The reader may find more details on OPGs in [7,8,11]. Let Σ be an alphabet and ε the
empty string. Let G = (N, Σ, P, S ) be a context-free (CF) grammar, where N is the non-
terminal alphabet, P the rule (or production) set, and S the axiom. A rule is in operator
form if its right hand side (r.h.s.) has no adjacent nonterminals; an operator grammar
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(OG) contains only such rules. The following naming convention will be adopted, un-
less otherwise specified: lowercase Latin letters a, b, . . . denote terminal characters; up-
percase Latin letters A, B, . . . denote nonterminal characters; letters r, s, t, u, v, . . . denote
terminal strings; and Greek letters α, . . . , ω denote strings over Σ ∪ N. The strings may
be empty, unless stated otherwise.

For an OG G and a nonterminal A, the left and right terminal sets are

LG(A) = {a ∈ Σ | A
∗
⇒ Baα} RG(A) = {a ∈ Σ | A

∗
⇒ αaB}

where B ∈ N ∪ {ε} and
∗
⇒ denotes the derivation relation.

The following binary operator precedence (OP) relations are defined:

equal in precedence: a � b ⇐⇒ ∃A→ αaBbβ, B ∈ N ∪ {ε}

takes precedence: a m b ⇐⇒ ∃A→ αDbβ,D ∈ N and a ∈ RG(D)
yields precedence: a l b ⇐⇒ ∃A→ αaDβ,D ∈ N and b ∈ LG(D)

The operator precedence matrix (OPM) M = OPM(G) is a |Σ |×|Σ | array that associates
with any ordered pair (a, b) the set Mab of OP relations holding between a and b. An OG
G is an operator precedence or Floyd grammar (OPG) if, and only if, M = OPM(G) is
a conflict-free matrix, i.e., ∀a, b, |Mab| ≤ 1.

A conflict-free OPM M on an alphabet Σ assigns a structure to strings in Σ∗, i.e., a
string can be uniquely associated with a tree.

If Ma,b = ◦, where ◦ ∈ {l,�,m}, we write a ◦ b. For u, v ∈ Σ∗ we write u ◦ v
if u = xa and v = by with a ◦ b. M is complete if Ma,b is defined for every a and
b in Σ. Moreover in the following we assume that M is �-acyclic, which means that
c1 � c2 � . . . � ck � c1 does not hold for any c1, c2, . . . ck ∈ Σ, k ≥ 1. See [8,7,15] for a
discussion on this hypothesis.

A simple chain is a string c0c1c2 . . . c`c`+1, written as c0 [c1c2 . . . c`]c`+1 , such that:
c0, c`+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . `, Mc0c`+1 , ∅, and c0 l c1 � c2 . . . c`−1 �
c`mc`+1 (by convention the special symbol # yields precedence to all elements of Σ and
all elements of Σ take precedence over it). A composed chain is a string c0s0c1s1c2 . . . c`
s`c`+1, where c0 [c1c2 . . . c`]c`+1 is a simple chain, and si ∈ Σ

∗ is the empty string or is
such that ci [si]ci+1 is a chain (simple or composed), for every i = 0, 1, . . . , `. Such a
composed chain will be written as c0 [s0c1s1c2 . . . c`s`]c`+1 . A string s ∈ Σ∗ is compatible
with the OPM M if #[s]# is a chain.

Let s be any word ∈ Σ∗. For 0 ≤ x < y ≤ |s| + 1, we say that (x, y) is a chain
boundary iff there exists a sub-string of #s# which is a chain a[r]b, such that a is in
position x and b is in position y. In general if (x, y) is a chain boundary, then y > x + 1,
and a position x may be in such a relation with more than one position and vice versa.
Moreover, if s is compatible with M, then (0, |s| + 1) is a chain boundary.

Definition 1. Free Grammar and Language
First, the definition of left and right terminal sets of a grammar G is extended from N
to (Σ ∪ N)∗ in the following natural way:

LG(α) =

{
if α = aβ, a ∈ Σ, β ∈ (Σ ∪ N)∗ then {a},
else if α = Aaβ, A ∈ N then LG(A) ∪ {a}
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RG(α) is defined symmetrically.
Let G be an OPG in the usual form such that: the axiom S does not occur in the

r.h.s. of any rule, no empty rule exists except possibly S → ε, the other rules having S
as l.h.s are renaming, and no other renaming rules exist.
G is a free grammar (FrG) iff a) for every production A → α, with A , S , LG(A) =

LG(α) and RG(A) = RG(α) and b) for every nonterminals A, B, LG(A) = LG(B) and
RG(A) = RG(B) implies A = B. A language generated by a FrG is a free language (FrL).

Notice that, by definition, a free grammar is invertible (i.e., no two rules have iden-
tical r.h.s). Also, being N \ {S } isomorphic to P(Σ) × P(Σ), it is customary to use
P(Σ)×P(Σ)∪{S } as the nonterminal alphabet of a free grammar. Given an OPM M, the
maxgrammar associated with M is the free grammar that contains all productions that
are compatible with M. Thus, the set of free grammars with a given OPM is a lattice
whose top element is the maxgrammar associated with the matrix [8].3

First properties and examples

In this section we investigate the generative power of free grammars by means of some
examples and comparisons with other classes of languages.

Example 1. The FrG depicted in Figure 1 generates unparenthesized arithmetic expres-
sions with the usual precedences of ∗ w.r.t. +, which are not VPLs. This grammar is
obtained from the maxgrammar by taking only those nonterminals that have a in both
left and right sets. By this way we guarantee that all strings generated by the grammar
begin and end with an a. We did not include the copy rules S → A, for each nonterminal
A ∈ P(Σ) × P(Σ), for brevity.

a + ∗

a m m

+ l m l

∗ �

〈{a}, {a}〉 → a
〈{+, a}, {+, a}〉 → 〈{+, a}, {+, a}〉 + 〈{∗, a}, {a}〉
〈{+, ∗, a}, {+, a}〉 → 〈{+, ∗, a}, {+, a}〉 + 〈{∗, a}, {a}〉

〈{∗, a}, {a}〉 → 〈{a}, {a}〉 ∗ a
〈{∗, a}, {a}〉 → 〈{∗, a}, {a}〉 ∗ a

〈{+, a}, {+, a}〉 → 〈{a}, {a}〉 + 〈{∗, a}, {a}〉
〈{+, ∗, a}, {+, a}〉 → 〈{+, ∗, a}, {+, a}〉 + 〈{a}, {a}〉
〈{+, ∗, a}, {+, a}〉 → 〈{∗, a}, {a}〉 + 〈{a}, {a}〉
〈{+, a}, {+, a}〉 → 〈{a}, {a}〉 + 〈{a}, {a}〉
〈{+, ∗, a}, {+, a}〉 → 〈{∗, a}, {a}〉 + 〈{∗, a}, {a}〉
〈{+, a}, {+, a}〉 → 〈{+, a}, {+, a}〉 + 〈{a}, {a}〉

Fig. 1. A FrG for unparenthesized arithmetic expressions (right), and its OPM (left).

Extending the above grammar to generate also parenthesized arithmetic strings is
an easy exercise by observing that all that we need are rules of the type 〈{L}, {M}〉 → LXM,
where L and M denote left and right parentheses, X represents anyone of previous non-
terminals, and the new nonterminal can occur in turn wherever 〈{a}, {a}〉 occurs in the

3 In [8] it is also shown that each free grammar is the top element of a Boolean algebra and that
the whole family of OPLs compatible with a given OPM is itself a Boolean algebra whose top
element is the language generated by the maxgrammar.
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above grammar. Free grammars are also adequate to generate various other types of lan-
guages, which model sequences of operations handled in a classical LIFO policy which
can be interrupted by high(er) priority interrupts, sequences of operations that manage
documents and their updating, etc. On the other hand FrLs are noncounting [6]; thus,
since regular languages can be counting, FrLs are incomparable with regular languages
and VPLs.

The above example also illustrates a typical feature of FrGs: they are not intended
to be built by hand; being driven by the powerset of Σ, both N and P suffer from combi-
natorial explosion. However, according to their original motivation to support grammar
inference, they are well suited to be built by some automatic device.4 Furthermore,
their typical canonical form makes also easy the application of the classical minimiza-
tion procedure that extends to structure grammars the minimization of finite state ma-
chines [14].

We envisage two major approaches to build FrGs generating a desired language: a
bottom up one abstracts away from a given sample of language sentences as in tradi-
tional grammar inference (in this case it exploits the distinguishing property of FrGs that
they can be inferred in the limit on the basis of a positive sample only [9]); a top-down
one, instead, starts from the maxgrammar and “prunes” nonterminals and productions
that would generate undesired sentences: this technique has been applied to build the
grammar of the above examples. We will see that FrGs can be useful even when the
language to define exceeds the limits of their generative power.

The next result concerns FrLs closure properties.

Theorem 1. FrLs (with a fixed OPM) are closed w.r.t. intersection but, unlike general
OPLs and VPLs, not w.r.t. complement, union, concatenation, and Kleene’s *.

FrLs can be associated with a natural and simple class of automata accepting them:
intuitively, a free automaton (FrA) shifts all input characters onto the stack, then, as
soon as a full r.h.s (of the FrG) is on top of the stack, and is recognized with the help
of the OPM, it replaces the r.h.s. with the unique corresponding l.h.s., if any; otherwise
the string is rejected. Without going into formal details we consider FrAs as “stateless”
since they simply must push symbols onto the stack and verify whether and when a
r.h.s. on its top is ready to be reduced.

First-order characterization of free languages

Unlike general OPLs, VPLs and many other language families that require a typical
MSO logic characterization [2,13], FrLs can be characterized by means of a first-order
logic (FOL). The key idea to achieve such a simplified formalization derives from the
“stateless nature” of FrLs. In fact, MSO formulas characterizing “normal” languages are
quantified w.r.t. sets of positions corresponding to the states entered by the accepting
automaton, such states being a qualifying feature of each automaton. In the case of
FrLs, instead there are no states and the stack alphabet is fixed a priori (it is essentially
Σ ∪P(Σ)×P(Σ)); thus, each position of the string can be associated with elements that

4 In fact the grammar of the example and a few others have been produced by the prototype tool
available at http://home.deib.polimi.it/pradella.
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belong to a finite set of possible choices: this allows to avoid quantification w.r.t. to sets
of positions. Next, we illustrate the key points of the construction.

Theorem 2. Let G be a FrG: then a FO formula ψG(m) can be effectively built such
that w ∈ L(G) iff w |= ψG(|w|).

As customary, first-order variables are interpreted over positions of the string; a(x)
is true iff the character in position x is a; the other logical symbols have the usual
meaning. Moreover, we introduce the predicate y: x y y is true iff (x, y) is a chain
boundary. Figure 2a illustrates the intuitive meaning of the relation: x y y means that
x + 1 and y − 1, respectively, are the positions of the leftmost and rightmost leaves of
the subtree with root labeled as H in the figure.

H

x + 1 y − 1x y

(a)

A

B

C

D

E

a

z

b

a

d

c

. . .

(b)

Fig. 2.

W.r.t. MSO syntax on the one side we drop second-order variables and, on the other
side, for every subset S ⊆ Σ we add monadic predicates L S (x) and R S (x): intuitively,
L S (x) will hold iff, in the leftmost path of a syntax tree going from the leaf at position
x towards the root there exists a (nonterminal) node whose L-set contains exactly the
elements in S ; for instance, in the case of Figure 2b L {a}(z), L {a, d}(z), L {a, c, d}(z)
hold. Then, the construction provides axioms such that, if x y y, then L L(H)(x + 1)
and R R(H)(y−1) hold. For instance, for all terminal rules of the type ρ = 〈{c1}, {ck}〉 →

c1c2 . . . ck we build the axioms

ϕ
ρ
1 := ∀x


xy x + k + 1∧

c1(x + 1) ∧ c2(x + 2) ∧ . . . ∧ ck(x + k)
⇒

L {c1}(x + 1) ∧ R {ck}(x + k)


and

ϕ
ρ
2 := ∀x

 xy x + k + 1 ∧ L {c1}(x + 1) ∧ R {ck}(x + k)
⇒

c1(x + 1) ∧ c2(x + 2) ∧ . . . ∧ ck(x + k)


We build similar axioms ϕρ3 and ϕρ4 for all rules of the type ρ = 〈L,R〉 → 〈L0,R0〉c1

〈L1,R1〉c2〈L2,R2〉c3 . . . 〈Lk,Rk〉ck〈Lk+1,Rk+1〉, with 〈Li,Ri〉 ∈ P(Σ)×P(Σ)∪{ε}, 0 ≤ i ≤
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k + 1, and L = L0 ∪ {c1}, R = Rk+1 ∪ {ck} (when 〈Li,Ri〉 = {ε}, Li and Ri are empty) and
we require also that

∧
〈L,R〉 ϕ〈L,R〉 holds, where ϕ〈L,R〉 :=

∨
ρ=〈L,R〉→α ϕ

ρ
1 ∧ ϕ

ρ
2 ∧ ϕ

ρ
3 ∧ ϕ

ρ
4.

The converse of Theorem 2 does not hold: in fact, by means of FO formulas we can
define also counting languages.

Conclusions

Recently, the old-fashioned OPGs somewhat surprisingly generated renewed interest
and potential application in the context of novel technologies such as parallel compila-
tion and model-checking. In our long term path aiming at exploiting their properties we
resumed free grammars, which were originally introduced to support automatic gram-
mar inference. The main result of this paper, i.e., the characterization of FrLs in terms
of FO logic, as opposed to the more general and traditional MSO one, could represent
a first step towards extending to OPLs and their subfamilies other classic results on
various types of logic characterization (FO, tree logic [1], LTL,. . . ) of various language
families (star-free regular languages [10,5], VPLs,. . . ).
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