
Towards more expressive 2D deterministic automata

Violetta Lonati1 and Matteo Pradella2

1 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano
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Abstract REC defines an important class of picture languages that is considered
a 2D analogous of regular languages. In this paper we recall some of the most
expressive operational approaches to define deterministic subclasses of REC. We
summarize their main characteristics and properties and try to understand if it is
possible to combine their main features to define a larger deterministic subclass.
We conclude by proposing a convenient generalization based on automata and
study some of its formal properties.

1 Introduction

Generalizing string languages and related approaches to two dimensions has always
been tempting, as pictures are an important part of our life, as well as text. One of the
most successful classes of picture languages introduced in the literature is surely REC,
the class of tiling recognizable languages [1], that aims at generalizing to 2D the class
of regular string languages. REC is a robust class that has various characterizations: e.g.
in terms of online tessellation acceptors [2], tiling systems [3], or Wang systems [4].

Unfortunately, many good properties of string languages are modified or are lost in
the transition towards the two dimensions. One such property is related to determinism:
all the proposed 2D analogous of regular languages lose expressivity if constrained to
deterministic models.

Essentially two approaches are proposed in the literature for defining a deterministic
model of finite state automaton within REC. The first one is presented in the seminal
work [5], which clearly predates REC and actually define a subclass. In this approach,
the input picture is seen as a read-only tape that can be visited freely, and finite states are
exploited to propagate information (see also [6] for an account of the main properties
of the model).

Another, orthogonal approach is based on fixing a scanning strategy to visit the
input picture, and allowing to add marking information to its pixels, so that it is possible
to propagate information locally. The first of such models is the one of the deterministic
online tessellation acceptors (or DOTAs), a kind of cellular automata [2]. This approach
was then generalized and extended by the following subclasses and models, presented
in chronological order: class Diag-DREC [7,8], the closure by rotation of the class
defined by DOTAs; tiling automata [9]; snake-deterministic tiling systems and class
Snake-DREC [10], in which scanning strategies follow a boustrophedonic order; then
the more recent µ-directed Wang automata and class Scan-DREC [11,12,13].



The literature has already considered and studied the relation among subclasses
within the same basic approach, but our knowledge of the actual general situation is still
quite partial. The aim of this paper is to consider and analyze the inherent characteristics
of these two main families of approaches, in order to get a clearer idea of the picture
(no pun intended), and obtain a larger deterministic class, yet still in REC.

The paper has the following structure: it first presents the preliminaries and basic
notions. In Section 3 it then considers how to add expressivity and the problem of
remaining within REC. In it a new deterministic model of automaton is presented. To
conclude, Section 4 studies some properties of the model.

2 Preliminaries

The following definitions are taken and adapted from [1]. Let Σ be a finite alphabet. A
two-dimensional array of elements of Σ is a picture over Σ. A picture having n rows and
m columns has size (n,m). # < Σ is used when needed as a boundary symbol; p̂ refers
to the bordered version of picture p. For instance

p =

p(1, 1) . . . p(1,m)
...

. . .
...

p(n, 1) . . . p(n,m)

p̂ =

# # . . . # #
# p(1, 1) . . . p(1,m) #
...

...
. . .

...
...

# p(n, 1) . . . p(n,m) #
# # . . . # #

.

A pixel is an element p(i, j) of p. We call (i, j) the position in p of the pixel. We say that
(i − 1, j), (i + 1, j), (i, j − 1), and (i, j + 1) are adjacent to position (i, j).

The set of all pictures over Σ is Σ++. A picture language is a subset of Σ++. If D
denotes some kind of picture-accepting device, then L(D) denotes the class of picture
languages recognized by such devices.

We will sometimes consider the 90o clockwise rotation, the horizontal mirror, and

the vertical mirror of a picture p. E.g. if p =
a b
c d

, then
c a
d b

,
c d
a b

, and
b a
d c

are its rotation, horizontal mirror and vertical mirror, respectively. Naturally, the same
operations can be applied to languages, and classes of languages, too.

2.1 Tiling recognizable picture languages

An important class of two-dimensional languages is REC, i.e., the class of tiling-reco-
gnizable languages, originally defined in terms of tiling systems [3]. Another equivalent
definition [14] is given by using online tessellation acceptors, OTAs, first introduced
in [2]. Here we define REC by using the equivalent notation introduced in [4], which is
based on a variant of Wang tiles.

Labeled Wang tiles. Let Σ be a finite alphabet and K be a set of colors, containing
the special color # representing borders. A labeled Wang tile (or tile for short) is a
unitary square with colored edges and a label in Σ. Formally, a tile is an element



A = (a, t, l, r, b) ∈ Σ × K4, where t, b, r, l represent the colors at top, bottom, right
and left edges, respectively. For better readability, we represent labeled Wang tiles as

A =

t
l a r

b
. For any direction d ∈ Dirs = {↑,→,←, ↓}, Ad is the color of the edge of

A towards direction d. We also use −d for referring to the direction opposite to d. The
set of tiles with labels in Σ and colors in K is Σ4K . We also consider partial tiles, where
some colors may be undefined: the set of partial tiles is denoted by ΣK . The domain of a
tile A is the set ∆A of directions where A is defined. Given two partial tiles A, B bearing
the same label, we say that B extends A if Bd = Ad for every d ∈ ∆A. When we need to
emphasize the fact that a tile is not partial, we will call it complete.

Wang pictures. Labeled Wang tiles in Σ4K can be used to build pictures over Σ, by using
colors to check compatibility: two tiles may be adjacent only if the color of the touching
edges is the same. A picture P ∈ Σ4K

++ is called a Wang picture if all borders are colored
with # and P(i, j)↓ = P(i + 1, j)↑ for every 1 ≤ i < n, and P(i, j)→ = P(i, j + 1)← for
every 1 ≤ j < m, where (n,m) is the size of P. The label of a Wang picture P over Σ4K is
the picture having for pixels the labels of pixels of P. Next (on the left), the reader may
find the example of a Wang picture of size (2, 2) with its label (in the middle). For better
readability, we represent Wang pictures by writing each common color only once, as in
the figure on the right.

#
# a 4

1

#
4 b #

3
1

# b 2
#

3
2 a #

#

a b
b a

# #
# a 4 b #

1 3
# b 2 a #

# #

Sometimes we need to consider partial Wang pictures, whose pixel are partial tiles
with compatible edges (some colors may be undefined). Any (partial) Wang picture is
called a (partial) Wang tiling of its label.

Wang systems. A Wang system is a triple ω = 〈Σ,K, Θ〉, where Σ is a finite alphabet,
K is a set of colors, Θ is a subset of Σ4K . The language generated by ω is the language
L(ω) ⊆ Σ++ of the labels of all Wang pictures built with tiles in Θ. Notice that a pic-
ture p ∈ L(ω) may have more than one Wang tiling in ω. REC is the class of picture
languages generated by Wang systems.

Example 1. Let L∃r=1r be the language of all pictures that have a row which equals the
first row. L is recognized by the Wang system producing tilings as in Figure 1. In it,
symbols from the first row are propagated downwards, and each row is examined from
left to right to check its compatibility with the first row: if a wrong symbol is found,
color × is propagated rightwards till the end of the row. If a row is found to be equal to
the first one, a primed version of its rightmost symbol is propagated downwards. The
picture is recognized only if in the bottom-right corner is colored by a primed symbol
(or the last row is checked as compatible and its rightmost symbol matches).



a b a a b

b a b a a

a a b a b

a b a a b

a b a b b

# # # # #
# a ◦ b ◦ a ◦ a ◦ b #

a b a a b
# b × a × b × a × a #

a b a a b
# a ◦ a × b × a × b #

a b a a b
# a ◦ b ◦ a ◦ a ◦ b #

a b a a b′

# a ◦ b ◦ a ◦ b × b #
# # # # #

Figure1. A picture recognized by the Wang system of Example 1 and the corresponding tiling.

2.2 2D automata models

In the literature, several models of 2D automata have been proposed.

4-way automata. Historically, the first generalization of finite state automata to two
dimensions is given by 4-way automata [5]. Soon after this paper, several other similar
models have been proposed: a survey can be found in [6]. As the standard model of
finite-state automata on strings, a 4-way automaton can be seen as a finite control having
a head that visits the positions of a picture and can move in four directions. At each
step, it reads the input symbol under the head, then it enters a new state and move
to an adjacent position: the direction to move towards and the new state to enter are
determined by a transition function, according to the read symbol and the current state.
The input picture is accepted if, starting from position (1, 1) in state q0, the automaton
eventually halts in state qyes.

Definition 1. A 4-way nondeterministic automaton (4NA) is a tuple 〈Σ,Q, q0, qyes, qno,
δ〉 where: Σ is a finite input alphabet; Q is a finite set of states, containing in par-
ticular the initial state q0, the accepting state qyes, and the rejecting state qno; δ :
Σ ×
(
Q \ {qyes, qno}

)
→ 2 Q × Dirs is the transition function.

Example 2. In [15] it is proved that the language L of square pictures with the first row
of the form ww̄, where w̄ is the reverse of w, is recognizable by a 4-way automaton. One
can see that the same holds if L is generalized to pictures of size (n,m), with n ≥ m ≥ 4.
We will call the latter language Lhalf.

Online tessellation acceptors. OTAs are defined in [2] as a restricted type of 2D cellular
automaton in which cells do not make transitions at every time-step: rather a “transition
wave” sweeps diagonally across the array. Each cell changes its state depending on the
two neighbors to the top and to the left. A run of a OTA on a picture p of size (n,m)
assigns a state (from a finite set) to each position (i, j) of p. Such state depends on the
states already associated with positions (i− 1, j) and (i, j− 1) and on symbol p(i, j) . At



time t = 0 an initial state q0 is associated with all the positions of the first row and of
the first column of p̂. The computation starts at time t = 1 by reading p(1, 1); at time
t = 2, states are simultaneously assigned to positions (1, 2) and (2, 1), and so on, to the
next diagonals. Picture p is recognized if there exists a run such that the state assigned
to position (n,m) is final.

Wang automata directed by polite scanning strategies. Recently [11,12], we introduced
µ-directed Wang automata (µ-NWA), a model of automata based on Wang tiles and
leaded by a prefixed scanning strategy µ. A Wang automaton can be seen as having
a head that visits the input picture, coloring at each step the edges of the position it
is visiting. For each accepting computation, the automaton produces a complete Wang
picture whose label is equal to the input picture. The coloring operations the automaton
performs are determined by a finite control, whereas the movements of the head are
lead by the scanning strategy µ; we requires that µ is polite, i.e., it has to satisfy some
further properties. Fix any starting corner cs and any starting direction ds ∈ Dirs, and
consider a next-position function, i.e., a partial function η : 2Dirs×Dirs→ Dirs such that
η(D, d) =⊥ if −d < D. The scanning strategy µ = 〈η, cs, ds〉 determines how to visit any
input picture. More precisely, let d be the current direction, representing the direction
from the last considered position, and D represent the set of edges on the picture border
together with the edges common with other already visited positions; then η(D, d) is the
direction towards the position to visit next.

In [13] we proved that any polite scanning strategy has to follow, except for some
bootstrap steps, one of four kinds of movements, or their rotations and symmetrical, in-
tuitively exemplified by the following pictures, where the number in each pixel denotes
its scanning order.

1 6 7 12

2 5 8 11

3 4 9 10

1 10 11 12

2 9 8 7

3 4 5 6

1 12 9 8

2 11 10 7

3 4 5 6

1 10 9 8

2 11 12 7

3 4 5 6
(a) snake (S) (b) L-like (J) (c) U-like (U) (d) spiral (C)

In the rest of the paper we will sometimes refer to rotations of the snake-like strategy
(i.e. S). The one depicted here is called the left-to-right version (denoted by Sl2r), while
its rotation is called top-to-bottom (St2b). Their respective 180o rotations are called Sr2l

and Sb2t.

Definition 2. A µ-directed nondeterministic Wang automaton (µ-NWA) is a tuple 〈Σ,K,
δ, µ, F〉 where: Σ is a finite input alphabet; K is a finite set of colors; δ : ΣK × Dirs →
2Σ4K is a partial function such that each tile in δ(A, d) extends A; µ = 〈η, cs, ds〉 is a
polite scanning strategy such that δ(A, d) , ∅ implies η(∆A, d) ,⊥; F ⊂ Σ4K is the set
of final tiles.

Intuitively, the behavior of a µ-directed Wang automaton over an input picture p is
the following. At the beginning, the head of the automaton points at the position in the
starting corner cs and the current direction is set to ds. When the current direction is d,
the head is at position x, the pixel and the colors of edges of p(x) are summarized by
A, then let d′ = η(∆A, d) and A′ ∈ δ(A, d). The automaton can execute this move: color



the edges of x according to A′, set the current direction to d′, and move to the position
adjacent to x following direction d′. If no move is possible, the automaton halts. The
input picture p is accepted if there exists a computation such that the edges of the final
position are colored according to some tile in F.

The choice of the scanning strategy µ is not relevant from the point of view of the
recognizing power of µ-directed Wang automata: for every polite scanning strategy µ,
the class of picture languages recognized by µ-NWA equals REC [12].

Deterministic models. The deterministic versions DOTA, 4DA, µ-DWA of OTA, 4NA,
and µ-NWA, respectively, are defined in the usual way, by making the transition func-
tions deterministic. L(DOTA) is characterized in terms of diagonal-deterministic tiling
systems [7]: here we use Diag-DREC to denote its closure under rotation. For each po-
lite scanning strategy µ, a subclass L(µ-DWA) of REC is obtained; Scan-DREC is the
union of all such deterministic classes [12].

All these models are strictly less powerful than their nondeterministic counterparts,
i.e., the corresponding classes of languages are properly included in REC. Their in-
clusion relations are summarized as follows. First, DOTAs are incomparable with both
4DA and 4NA [2]. Second, in [12], L(St2b-DWA) is proved to coincide with t2b-UREC,
a class introduced in [7] and, more generally, one can see that L(Sd-DWA) coincides
with d-UREC for any direction d ∈ {t2b, b2t, l2r, r2l}. Since Diag-DREC is properly
contained in the union of all classes d-UREC [7], we have that Scan-DREC properly
extends Diag-DREC and hence also L(DOTA).

The relation between Wang automata and 4-way automata is not clear yet. We do
not know any example of language in 4DA that does not belong to Scan-DREC; on the
other hand, there exists a language L ∈ Scan-DREC that cannot be recognized by a
4NA (and a fortiori not by a 4DA), as shown in the following example.

Example 3. Consider again L∃r=1r as defined in Example 1. Such language cannot be
recognized by a 4-way automaton [14]. But it is both in t2b-UREC and in l2r-UREC [7],
hence the corresponding St2b-DWA and Sl2r-DWA can be built: they basically produce
the tiling of Figure 1, except for a delay of one row in case of St2b-DWA, and one
column in case of Sl2r-DWA.

It is interesting to note that, for every direction d, a necessary condition is known
for a language to belong to d-UREC, and hence to L(Sd-DWA), since those classes co-
incide [12]. Such condition is based on Matz’s technique [16], that suggests to consider
a picture as a string over the alphabet of columns (or rows), and Hankel matrices.

The Hankel matrix of a string language S ⊆ Ω∗ is an infinite boolean matrix MS

indexed by words α, β ∈ Ω∗. MS is defined by setting MS (α, β) = 1 if and only if αβ ∈ S .
Let L be a picture language and, for every m, let L(m) be the language of pictures in L
having m rows. Then L(m) can be seen as a string language over the alphabet Ω = Σm

of columns of size m. In [7] it is proved that L ∈ t2b-UREC implies that there exists an
integer k such that, for every m, the number of distinct rows of the Hankel matrix ML(m)
is lower than km. Similar properties can be given for any direction d.

Example 4. The 4NA cited in Example 2 and recognizing L = Lhalf is deterministic. On
the other hand, here we prove that L cannot be recognized by any Sl2r-DWA. For sake of



simplicity, we assume that all rows except the first one are filled with symbol 0. Let us
study the Hankel matrix ML(m) for a fixed m. One can verify that α , α′ implies that the
rows of ML(m) indexed by α and α′ differ. In other words, the number of distinct rows
in ML(m) is not bounded w.r.t. m. Hence, the necessary condition stated above does not
hold and this means that Lhalf < L(Sl2r-DWA). Similarly, one has Lhalf < L(Sr2l-DWA).

3 Adding expressivity

In general, two main approaches are proposed in the literature in the attempt of defining
a deterministic model of automaton. The first one considers the input picture as a read-
only tape that can be visited freely, and uses finite states to propagate information [5,6].
The second one fixes a scanning strategy to visit the input picture, but allows the possi-
bility to mark its positions, and use this markers to propagate information locally: each
position is marked with a state by DOTAs [2]; it is rewritten with a symbol from a new
alphabet in Diag-DREC [7,8]; its edges are colored by Wang automata [12,13].

In this section we try to combine these two apparently orthogonal approaches, in or-
der to improve their expressive power: the idea is to use both states and colors assigned
to positions. Clearly we want to stay inside REC, hence this combination must be done
carefully.

The first idea is to imagine an automaton with a head that is able to move through
the input picture according to its content, and depending on a finite control, changing
its state at each step. Such head should move from a position to an adjacent one, and
color at each step some edges of the position it is visiting.

In all models presented in the literature, the coloring operation in a given position
are done once and for ever; similarly we do not admit the possibility to change a color
previously assigned to a position. This leads to the following tentative definition. A 2D
free deterministic automaton is defined by a tuple 〈Σ,K,Q, q0, qyes, qno, δ〉 where: Σ is
a finite input alphabet; K is a finite set of colors; Q is a finite set of states, containing
in particular the initial state q0, the accepting state qyes, and the rejecting state qno;
finally δ : ΣK ×

(
Q \ {qyes, qno}

)
→ ΣK × Q × Dirs is a partial function such that

δ(A, q) 3 (A′, q′, d) implies that A′ extends A.
The behavior of a 2D free deterministic automaton 〈Σ,K,Q, q0, qyes, qno, δ〉 over an

input picture p ∈ Σ++ would be described informally as follows. At the beginning, the
head of the automaton points at the top-left corner and the current state is set to q0.
When the current state is q, the head is placed at position x, the pixel and the colors
of edges of p at position x are summarized by P(x), then let (A′, q′, d) ∈ δ(P(x), q).
Hence the automaton may execute this move: if A is partial, color edges at position x
according to A′, then enter state q′, move to the position adjacent to x towards direction
d, and extend P to the Wang picture P′ with P′(x) = A′.

Notice that the head can visit any cell any number of times, but colors cannot be
changed (A′ is a Wang tile that extends A). If no move is possible, the automaton halts.
The input picture p is accepted if there is a computation such that the automaton even-
tually enters state qyes.

Example 5. Language L∃r=1r can be recognized by an automaton that visits the input
picture following a sort of “comb-like” movement. Next you find an accepted input



picture and the partial Wang picture obtained by the computation; the symbols never
read by the automaton are omitted.

a b a a b

b a b a a

a a b a a

a b a a b

a b a b a

# # # # #
# a ◦ b ◦ a ◦ a ◦ b #
◦ ◦ ◦ ◦ ◦

# b × #
◦ ◦

# a ◦ a × #
◦ ◦ ◦ ◦ ◦

# a ◦ b ◦ a ◦ a ◦ b #
◦ ◦ ◦ ◦ ◦

# a ◦ b ◦ b × #
# # # # #

The automaton uses only two colors: the reject color × when it finds out that a row
is different from the first one, and another symbol ◦ to mark the edges of the position
it is visiting for the first time. The set of states is Q = {q0, qyes, qno} ∪ Σ ∪ Σ̄, where
symbols in Σ̄ are a barred version of symbols in Σ, and they are used to distinguish
the part of the computation when the head moves leftwards. The transition function is
summarized in Figure 2.

Considering an input picture of size (n,m), the automaton repeats the following
sequence of moves m times. For every j < m, it visits the top row from left to right until
it reaches the first unvisited position, i.e. (1, j). The symbol found there is saved in the
state. Then, the automaton goes back to (1, 1) and moves downward, to find all rows
that are compatible with the first j symbols of the first row.

This task is performed as follows. Each row, starting from the second, is scanned
from left to right until one of the following two cases occurs. (1) A reject color is found,
so the row was already marked as unsuitable, and the automaton has to go back to the
first column and then move to the next row. (2) There is an unvisited position that, by
construction, is position (i, j), so either it contains the symbol saved in the state and it
has to be marked just as visited, or it contains a wrong symbol and it is hence marked
with the reject color. As in the previous case, the automaton has to go back to the first
column and then move to the next row. Once the bottom row has been examined, the
automaton enters state q0 and moves leftward to the first column, then goes back up to
the first row and then repeats the cycle by considering position (1, j + 1).

When the last position in the first row is scanned, to accept the input picture the
automaton has only to check if there is at least one non-rejected row ending with the
right symbol.

The previous example shows a critical feature of the model: whenever the symbol at
position (1, j) is considered, the automaton enters a sort of loop (it goes across each row
i until it reaches position (i, j) or finds the reject color, then it comes back to the first
column), whose outcome is different according to a piece of information which is not
locally propagated (i.e., whether the row has already been rejected or not). Clearly this
sort of cyclic computation cannot be removed and this prevents to apply a construction
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#
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◦
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◦
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#

◦
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◦ σ
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◦
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#

◦

◦ σ −
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◦
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◦
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◦
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◦ σ #
#

or
◦

◦ σ #
#

, qno

with σ , τ

◦ τ #
#

or
◦

◦ τ #
#

qyes

or ◦ τ # or
◦

◦ τ #

q0 τ τ̄

#
# σ ◦

◦

q0, → τ, ↓

#
◦ σ ◦

◦

q0, → τ, ←

◦

# σ ◦

◦

q0, ↑ τ, → τ, ↓

◦

# σ ×

◦

q0, ↑ τ, ↓

◦

◦ σ ◦

◦

τ, → τ̄, ←

◦

◦ σ ×

◦

τ̄, ←

◦

# σ ◦

#
q0, ↑ τ, →

◦

# σ ×

#
q0, ↑

◦

◦ σ ◦

#
q0, ← τ, →

◦

◦ σ ×

#
q0, ←

Figure2. The transition function of the automaton for language L∃r=1r: coloring steps (left), re-
visiting steps (right). Rows are indexed by partial Wang tiles, columns are indexed by states. For
revisiting steps, the complete Wang tile in the codomain is omitted since equals the tile in the
domain. Notation − stays for × if τ , σ, for ◦ otherwise.

similar to the one used in [2] to prove that L(4NA) is included in REC. Actually, it turns
out that this model is really too permissive, as next example illustrates.

Example 6. Consider the language Lanbn of pictures with one row of the form anbn.
Since Lanbn , seen as a string language, is not regular, clearly L < REC. However Lanbn is
recognizable by the following free automaton: the set of states is Q = {q0, q1, qyes, qno}

and the set of colors is K = {ok} it starts from the top-left border, if the current symbol is



a, then it marks its right edge by color yes, enters state q1, and move rightwards without
changing states nor coloring, until it reaches a position having the right edge already
marked (or bordered); if the current symbol is b, then it marks its left edge by color ok,
enters state q0, and move leftwards without changing states nor coloring, until it reaches
a position having the left edge already marked (or bordered). Such sequence of moves
is repeated until all position are marked, and in this case the input picture is accepted.
Whenever one of the previous conditions is not satisfied, the input picture is rejected.

Hence, the definition of free automaton needs to be somehow constrained. For in-
stance one should require that the first time a position is visited, a coloring step must be
performed. This is obtained simply by replacing the codomain of δ by Σ4K × Q × Dirs.
The new condition would prevent the behavior of the automaton in the previous exam-
ple. However this is not sufficient yet, as next example illustrates.

Example 7. Consider the language L2anbn of pictures with two rows, the first one having
the form anbn. Again, it is easy to see that L2anbn < REC (otherwise it would be easy to
build a Wang system for Lanbn , too). However L2anbn is recognizable by a free automaton
that further respects the above condition. The behavior of such automaton is similar to
the one described in Example 6, except that the first row is used only to mark the
position under consideration, and the second row allows to go back and forth from left
to right.

These problems suggest that the combination of coloring and revisiting steps should
be simplified: first the automaton executes a sequence of coloring steps, then it performs
a sequence of revisiting steps, using the information enclosed in the colors placed be-
fore. We will call the two phases tiling and roaming, respectively. In other words, the
automaton simulates first the behavior of a µ-DWA (in the tiling phase), for some pre-
fixed scanning strategy µ, and then the behavior of a 4DA (in the roaming phase).

This leads to this new definition:

Definition 3. A 4-way deterministic µ-directed Wang automaton (µ-4DWA) is a tuple
〈Σ,K, γ, µ,Q, q0, qyes, qno, δ〉 where:

– Σ is a finite input alphabet;
– K is a finite set of colors;
– γ : ΣK × Dirs → Σ4K , the tiling transition function, is a partial function such that

each tile in γ(A, d) extends A;
– µ = 〈η, cs, ds〉 is a polite scanning strategy such that γ(A, d) , ∅ implies η(∆A, d) ,⊥;
– Q is a finite set of states, containing in particular the initial roaming state q0, the

accepting state qyes, and the rejecting state qno;
– δ : Σ4K × Q→ Q × Dirs is the roaming transition function.

The formal semantics is not presented but it is a straightforward combination of
µ-DWA and 4DA: when the µ-DWA component ends its picture scanning, the 4DA
component starts working from the current position.

Example 8. For instance, a St2b-4DWA for the language L∃r=1r ∩ Lhalf can be defined
as follows: first visit the input picture row by row from top to bottom, simulating the
St2b-DWA defined in Example 3, to check if the input picture is in L∃r=1r; then simulate
the 4DA cited in Example 2, to check if the input picture is in Lhalf.



4 Properties of 4-way deterministic Wang automata

Theorem 1. For every polite µ, L(4DA) ∪ L(µ-DWA) ⊆ L(µ-4DWA) ⊆ REC.

Proof. It is easy to verify that both 4DA and µ-DWA (for µ polite) are special kinds of
µ-4DWA. On the one hand, 4DA are obtained by reducing the set of colors used in the
tiling part to the empty set, i.e., when ΣK is simply Σ. On the other hand, µ-DWA are
obtained by omitting the roaming part of the transition function.

Let L be accepted by some µ-4DWA A. Clearly, A can be seen as the combination of
a µ-4DWA A1 over alphabet Σ and a 4DA A2 over alphabet ΣK . Now, let L1, L2 ⊆ ΣK

++

be defined as follows. L1 the set of (partial) Wang tilings produced by all accepting
computation of A1; L2 is the language accepted by A2. Then, by definition L = λ(L1 ∩

L2), where λ : ΣK → Σ is the projection that maps each tile onto its label. Since REC is
closed under intersection and alphabetic projection, we have that L ∈ REC. ut

Theorem 2. For every polite µ, L(µ-4DWA) is a boolean algebra.

Proof. By definition, since both L(4DA) and L(µ-DWA) are boolean algebras [12]. ut

Theorem 3. There exists a language in L(S-4DWA) which is not in L(4DA) nor in
Scan-DREC.

Proof. Consider the language Lhalf ∩ L∃r=2r of pictures having the first row of the form
ww̄, and some row that equals the second row. Let L be the intersection of such language
with its horizontal mirror.

Language L can be recognized by a Sl2r-4DWA that simulates first a variant of the
Sl2r-DWA of Example 3 (such variant examines at the same time both the second and
the second-last rows instead of only the first one), then the 4DA of Example 2, and then
again a rotated version of the same 4DA.

On the other hand, it is known [14] that 4NA cannot recognize L∃r=2r, hence a for-
tiori L cannot be recognized by any 4DA. Now we show that L is not in Scan-DREC.
Since a St2b-DWA cannot recognize L∃r=2r

h, as proved in [12], then L cannot be recog-
nized by neither a St2b-DWA nor a Sb2t-DWA. Moreover, since no C-DWA can recog-
nize L∃r=2r (see [12]), then clearly L cannot be recognized by any C-DWA. By a similar
reasoning one can prove that L is neither in L(U-DWA), nor in L(J-DWA), or in any
of their rotations. Finally, reasoning as in Example 4 we can verify that L cannot be
recognized by neither a Sr2l-DWA nor a Sl2r-DWA.

Hence, the result follows from the fact that all polite scanning strategies are basi-
cally limited to C,U, J, S and their rotations and mirrors [13]. ut

Notice that the language used in the previous proof to separate classes Scan-DREC and
L(4DA) from L(S-4DWA) actually separates also L(4NA) from L(S-4DWA). It is not
clear if there exists any language recognizable nondeterministically by a 4NA but not
by µ-4DWA.

Concludingly, these last results clearly show that the proposed approach of com-
bining the free roaming of 4-way automata and coloring based on predefined scanning
strategies is effective. Indeed, this yields to a concept of determinism which extends
those presented in [5,2,7,8,10,11,12,13].
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