
RAIRO-Inf. Theor. Appl. 40 (2006) 227-253
DOI: 10.1051/ita:2006004

GRAPH FIBRATIONS, GRAPH ISOMORPHISM,
AND PAGERANK ∗

Paolo Boldi1, Violetta Lonati1, Massimo Santini1

and Sebastiano Vigna1

Abstract. PageRank is a ranking method that assigns scores to web
pages using the limit distribution of a random walk on the web graph.
A fibration of graphs is a morphism that is a local isomorphism of in-
neighbourhoods, much in the same way a covering projection is a local
isomorphism of neighbourhoods. We show that a deep connection re-
lates fibrations and Markov chains with restart, a particular kind of
Markov chains that include the PageRank one as a special case. This
fact provides constraints on the values that PageRank can assume. Us-
ing our results, we show that a recently defined class of graphs that
admit a polynomial-time isomorphism algorithm based on the com-
putation of PageRank is really a subclass of fibration-prime graphs,
which possess simple, entirely discrete polynomial-time isomorphism
algorithms based on classical techniques for graph isomorphism. We
discuss efficiency issues in the implementation of such algorithms for the
particular case of web graphs, in which O(n) space occupancy (where
n is the number of nodes) may be acceptable, but O(m) is not (where
m is the number of arcs).
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1. Introduction

PageRank [27] is one of the most well-known measures of importance of a web
page: inspired by previous works on the mutual citations for determining the
relevance of scientific papers, it is based on the intuition that a web page is more
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important if it is linked to by many important pages. PageRank is one of the
factors used by search engines to determine the order of answers to a query, a
problem of uttermost importance that is often referred to as web ranking, whence
the name “PageRank”.

One suggestive metaphor to describe the idea behind PageRank is the following:
consider an iterative process where every web page has a certain amount of money
that will at the end be proportional to its importance. Initially, all pages are
given the same amount of money. Then, at each step, every page gives away all
of its money to the pages it points to, distributing it equally among them: this
corresponds to the interpretation of links as a way to confer importance. This idea
has a limit, however, because there might exist groups of pages that “suck away”
money from the system without ever returning it back. Since we want to disallow
the creation of such oligopolies, we force every page to give a fixed fraction 1−α of
its money to the State; the money collected this way is then redistributed among
all the pages either equally or according to some criterion, represented as a vector
v whose i-th component is the fraction of money that will be given back to page i.

Such a system can be represented as a Markov chain and, as we will show, it
reaches a stationary state for every α < 1 and for every preference vector v. The
distribution of such stationary state is the PageRank vector.

This formulation of PageRank can be generalised in many ways, for example
allowing parallel links (a choice that will result extremely useful from a techni-
cal viewpoint) and considering weighted versions, so that every page can choose
how the money given to its successors should be distributed among them. These
generalisations naturally lead to recast PageRank as a special case of a perturbed
Markov chain [19, 29] that we call Markov chain with restart.

The second player in this paper is a particular kind of graph morphism, called
graph fibration [2]. The elementary definition we shall give has appeared in many
places in the scientific literature, most notably in symbolic dynamics (left/right
covers [22], regular homomorphisms [25]) and spectral graph theory (divisors [28]
and semicovers [14]). However, a graph morphism has an immediate interpretation
as a functor between free categories, and in that case Grothendieck’s oldest notion
of fibration [10] reduces exactly to the elementary definition we shall use.

The main result of the paper shows that the existence of a fibration f : G→ B
preserving the colour on the arcs (i.e., the transition probabilities) implies certain
constraints on the value of PageRank (actually: of the limit distribution of any
Markov chain with restart); more precisely, the limit distribution associated to G
must be fibrewise constant. This result provides a surprising link between a purely
combinatorial, discrete construction and the values of a limit process.

In the last part of the paper we study the implications of our results, showing
that the class of Markovian spectrally distinguishable graphs, introduced by Gori,
Sarti and Maggini [8] as a class of graphs possessing polynomial-time isomorphism
algorithms, is actually a subclass of fibration-prime graphs. The latter has very
quick isomorphism algorithms, easily derived from partitioning algorithms devel-
oped in the eighties [4], and in fact used by Brendan McKay’s program nauty [23]
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for computing canonical labellings, automorphism groups and isomorphisms be-
tween graphs. Finally, we discuss the particular case of web graphs, in which
O(n) space occupancy may be acceptable, but O(m) is not (here, n and m are the
number of nodes and arcs, respectively).

We discuss results that are at the intersection of several areas: graph theory,
Markov chains, graph-isomorphism algorithms, and ranking of web pages. Thus,
we spend a significant part of the paper to introduce the definitions that are
necessary to state our main results. In passing, we make a number of observations,
mainly obtained from mathematical literature, that are apparently not widely
known in the computer science community, and that provide more immediate
proofs of some known results.

2. Graph-theoretical preliminaries

A (directed multi)graph G is defined by a set NG of nodes, a set AG of arcs,
and by two functions sG, tG : AG → NG that specify the source and the target of
each arc (we shall drop the subscripts whenever no confusion is possible). Given
a set of colours C, we say that a graph G is C-coloured if it is endowed with a
colouring function cG : AG → C. We use the notation G(i, j) for denoting the set
of arcs from node i to node j, that is, the set of arcs a ∈ AG such that s(a) = i
and t(a) = j; the arcs in G(i, j) are said to be parallel to one another. A graph is
separated iff it has no parallel arcs1. A graph is symmetric iff it is endowed with
an involution (¯) : AG → AG such that s(a) = t(ā) (and consequently t(a) = s(ā))
for all arcs a ∈ AG. A loop is an arc with the same source and target. Following
common usage, we denote with G(−, i) the set of arcs coming into i, that is, the
set of arcs a ∈ AG such that t(a) = i, and analogously with G(i,−) the set of
arcs going out of i. We write d+

G(i) = |G(i,−)| for the outdegree of i in G and
d−G(i) = |G(−, i)| for the indegree of i in G. The maximum outdegree (indegree)
is denoted by ∆+

G (∆−
G).

A path (of length n ≥ 0) is a sequence π = 〈i0a1i1 · · · in−1anin〉, where ik ∈ NG,
ak ∈ AG, s(ak) = ik−1 and t(ak) = ik. We define s(π) = i0, t(π) = in, |π| = n
and let G∗(i, j) = { π | s(π) = i, t(π) = j } (the set of paths from i to j). We
shall usually omit the nodes from the sequence when at least one arc is present.
We say that i leads to j and write i � j when there is π ∈ G∗(i, j) such that
|π| > 0. We say that i and j communicate and write i � j whenever i � j
and j � i. It is easy to observe that the reflexive closure of� is an equivalence
relation among nodes, whose classes are called the strongly connected components
of the graph. Moreover, the relation � naturally induces a partial order among
such components.

An in-tree is a graph with a selected node r, the root, and such that every
other node has exactly one directed path to the root; if t is a node of an in-tree,
we sometimes use t → r for denoting the unique path from t to the root. If T is

1The name originates from the fact that such graphs are separated for the double negation
topology in the topos of graphs – see [32].
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an in-tree, we write h(T ) for its height (the length of the longest path). Finally,
we write T � k for the tree T truncated at height k, obtained by deleting all nodes
at distance greater than k from the root.

A graph morphism f : G → H is given by a pair of functions fN : NG →
NH and fA : AG → AH commuting with the source and target maps, that is,
sH ◦ fA = fN ◦ sG and tH ◦ fA = fN ◦ tG (again, we shall drop the subscripts
whenever no confusion is possible). In other words, a morphism maps nodes to
nodes and arcs to arcs in such a way to preserve the incidence relation. In the
case of C-coloured graphs, f is a colour-preserving morphism if cG = cH ◦ f . A
morphism is epimorphic (or an epimorphism) iff fN and fA are both surjective.
Unless otherwise stated, morphisms between trees are required to preserve the
root.

2.1. Fibrations

The central concept we are going to deal with is that of graph fibration [2],
a particular kind of graph morphism induced by the notion of fibration between
categories.

Definition 2.1. A fibration between the graphsG and B is a morphism f : G→ B
such that for each arc a ∈ AB and for each node i ∈ NG satisfying f(i) = t(a)
there is a unique arc ãi ∈ AG (called the lifting of a at i) such that f(ãi) = a and
t(ãi) = i.

We inherit some topological terminology. If f : G→ B is a fibration, G is called
the total graph and B the base of f . We shall also say that G is fibred (over B).
The fibre over a node h ∈ NB is the set of nodes of G that are mapped to h, and
shall be denoted by f−1(h).

There is a very intuitive characterisation of fibrations based on the concept of
local in-isomorphism: a fibration is a graph morphisms satisfying the

Local In-Isomorphism Property: If f(i) = f(j) there exists a (colour-
preserving, if G is coloured) bijection ψ : G(−, i) → G(−, j) such that
f(s(a)) = f(s(ψ(a))), for all a ∈ G(−, i).

Another possible, more geometric way of interpreting the definition of fibration is
that given a node h of B and a path π terminating at h, for each node i of G in
the fibre of h there is a unique path terminating at i that is mapped to π by the
fibration; this path is called the lifting of π at i, and it is denoted by π̃i.

In Figure 1, we show two graph morphisms; the morphisms are implicitly de-
scribed by the colours on the nodes. The morphism displayed on the left is not a
fibration, as the loop on the base has no counterimage ending at the lower grey
node, and moreover the other arc has two counterimages with the same target.
The morphism displayed on the right, on the contrary, is a fibration. Observe that
loops are not necessarily lifted to loops.

Given a graph G and a node i ∈ NG, define the in-tree G̃i as follows:
• the nodes of G̃i are the finite paths of G ending in i;
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Figure 1. On the left, an example of graph morphism that is
not a fibration; on the right, a fibration. Colours on the nodes
are used to implicitly specify the morphisms.

• there is an arc from the node π to the node π′ iff π starts with arc a and
continues with path π′ for some arc a (if G is coloured, then the arc gets
the same colour as a).

We then define the graph morphism υi
G : G̃i → G by mapping each node π of

G̃i (i.e., each path of G ending in i) to its starting node, and each arc of G̃i to
the corresponding arc of G. It is immediate to check that υi

G is a fibration. We
call υi

G the universal fibration of G at i, and G̃i the universal total graph of G
at i. Such names are motivated by the following properties. If T is an in-tree
and f : T → G is a fibration that maps the root to node i, than T and G̃i are
isomorphic. Moreover, every other fibration with base G factors the universal
fibration, that is, for every fibration f : H → G and for every node j ∈ f−1(i)
there is a unique isomorphism ι : G̃i → H̃j such that υi

G = f ◦ υj
H ◦ ι:

G̃i
ι

υi
G

H̃j

υj
H

H

f

G

Now, by the universal property of universal fibrations it is immediate to see
that nodes in the same fibres have the same universal total graph (we shall not
distinguish isomorphic total graphs). The process can be actually reversed, as to
any graph we can associate its minimum base Ĝ, a graph over which G is fibred,
and that is fibration prime in the sense that it cannot be fibred nontrivially and
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Figure 2. A graph (upper left), its minimum base (lower left)
and the universal total graph of the black node (right). Colours
on the nodes are used to specify implicitly the minimal fibration
and the universal fibration.

epimorphically (i.e., every epimorphic fibration G→ B is an isomorphism).2 As a
matter of fact, the nodes of Ĝ are actually the nodes of G quotiented with respect
to the relation of having the same universal total graph. Hence, all fibrations from
G to Ĝ (called minimal fibrations) have the same node component. Figure 2 shows
a graph, its minimum base and the universal total graph of a node.

The construction of Ĝ can be made effective by observing that isomorphism of
universal total graphs between nodes of the same graph is easily computable, by
a result of Nancy Norris [26] that we restate in our terminology:

Theorem 2.2. If G has n nodes, for all nodes i, j, G̃i ∼= G̃j iff G̃i � (n − 1) ∼=
G̃j � (n − 1), that is, iff there is an isomorphism between the first n − 1 levels of
the two trees.

Fibration-prime graphs are node-rigid – all their automorphisms are the identity
on the nodes; moreover the following property holds:

Proposition 2.3. A graph is fibration prime iff distinct nodes have non-isomorphic
universal total graphs. Moreover, if two fibration-prime graphs have the same set

2In fact, the partition induced by the fibres of the minimum base is the coarsest equitable
partition, introduced in the late sixties by the community working on graph spectra. Indepen-
dently, a tradition was developing in computer science about graph partitioning, a technique to
label graph nodes in a way that is automorphism invariant [5,31]. Finally, in symbolic dynamics
the minimum base of a deterministically coloured graph is the Fischer cover of the graph seen
as a sofic system [22]; equivalently, if the graph is seen as a deterministic automaton all whose
states are initial and final, the minimum base is the minimum automaton.
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of universal total graphs, then the graphs are isomorphic, and the node component
of all such isomorphisms is unique.

We also recall that every action of a group on a graph induces a fibration, since
the orbits satisfy the local in-isomorphism property; in particular, a graph with
an automorphism that is nontrivial on the nodes cannot be fibration prime.

3. Preliminaries about non-negative matrices
and Markov chains

Let S be a finite set of states. A sequence of S-valued random variables (Xk)k∈N

is said to be a (homogeneous finite) Markov chain [16] iff for all k > 0 and
i0, i1, . . . , ik ∈ S

Pr{Xk = i0 | Xk−1 = i1, Xk−2 = i2, . . . , X0 = ik} = Pr{Xk = i0 | Xk−1 = i1},

and the right-hand side does not depend on k (whenever the left-hand side is
defined). The vector3 p defined by pi = Pr{X0 = i} is the initial distribution, and
the matrix P defined by Pij = Pr{Xk = j | Xk−1 = i} is the transition matrix
of the Markov chain. For any k ≥ 0, let p(k) be the vector of the (marginal)
probability distribution of Xk, i.e.,(

p(k)

)
i
= Pr{Xk = i}

and in particular p(0) = p. As it is easy to verify that pT
(k) = pTP k, the en-

tire behaviour of the chain is established by its initial distribution and transition
matrix.

Note that ‖p‖ = 1, and that P is stochastic, that is, all its rows are distributions
or, equivalently, P1 = 1, where 1 is the vector whose components are all 1’s. Such
a matrix P naturally defines a separated graph with node set S, and with arcs
coloured on (0 . . 1] corresponding to non-null transitions.

More generally, any non-negative square matrixM naturally defines a separated
R+-coloured4 graph G where NG is the set of indices of M whereas AG = { 〈i, j〉 |
Mij > 0 }, s(〈i, j〉) = i, t(〈i, j〉) = j and cG(〈i, j〉) = Mij . Conversely, given
an R+-coloured graph G, one can consider the matrix M having NG as set of
indices, and Mij =

∑
a∈G(i,j) cG(a). This correspondence restricts to a bijection

between the set of separated R+-coloured graphs and the set of non-negative
square matrices. In the following, when no confusion is possible we will denote
both a matrix and the corresponding graph with the same letter and we will say
that a graph R+-coloured is stochastic iff the associated matrix is.5

3In this paper, all vectors are column vectors, the vector norm ‖−‖ is L1 and a non-negative
vector with norm 1 is a distribution over the set of its indices.

4We use R+ to denote the set of positive real numbers.
5We observe that sometimes “stochastic graph” is used to mean a graph generated by some

stochastic process; here, on the other hand, the graph, and its colouring, are fixed.
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Essentially, a stochastic graph is a convenient way to represent the transition
matrix of a Markov chain, with the additional freedom of being able to specify
multiple arcs between states. Note that traditionally graphs have been used to
define random walks [20] – a typical example of a Markov chain: in that case,
the states of the chain are the nodes of an undirected graph, and the transitions
from a node to its neighbours are equiprobable. In our setting, this is equivalent to
representing the undirected graph as a a symmetric graph and setting the colour of
an arc a to 1/d+(s(a)). More generally, every (not necessarily symmetric) graph
G without sinks6 can be coloured as above. We call the colouring so obtained
the natural random-walk colouring and the associated Markov chain the natural
random walk on G.

As we have already observed, the behaviour of a Markov chain mainly depends
on the properties of its transition matrix. For this reason, in the next section we
will recall some basic facts about non-negative matrices.

3.1. Non-negative matrices

Given a non-negative matrix M , we say that M is primitive if there exists a
positive integer k such that all entries of Mk are positive and that M is irreducible
if, for any i and j, there exists a positive integer k such that (Mk)ij > 0. It
is easy to verify that M is irreducible iff its graph is strongly connected (i.e.,
iff it has one single strongly connected component). The period of an index i is
defined as gcd

{
k > 0 | (Mk)ii > 0

}
; an index is said to be aperiodic if its period

is 1. It is well known that indices in the same strongly connected component have
the same period, so that, in particular, it is possible to define the period of an
irreducible matrix. Moreover, if Mii > 0 (i.e., if there is a loop at i) then the
strongly connected component including i is aperiodic. A matrix is primitive iff it
is irreducible and aperiodic.

An important result on irreducible matrices (see, e.g., [30]) is the Perron–
Frobenius Theorem, stating that every non-negative irreducible matrix M has
a positive eigenvalue, equal to its spectral radius ρ(M), associated with a positive
eigenvector. If M is reducible a weaker statement holds: ρ(M) is a (possibly null)
eigenvalue of M and there exists a non-negative eigenvector associated with it.

Indices can be classified as follows. An index i is said to be inessential if there
exists a j such that i� j, but j 	� i, or if i leads to no index at all (this happens
if the i-th row of M is null), otherwise it is said to be essential. It is easy to check
that indices in the same strongly connected component are all of the same kind,
and that the essential components are the maximal elements of the partial order
induced by �. In particular, the indices of an irreducible matrix are all essential.
Note also that if every row of M has at least a positive entry, then there exists
at least one essential index (hence, one essential component). In particular, this
implies that any stochastic matrix has at least one essential index.

6A node i of a graph G is a sink if G(i,−) = ∅.
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Finally, a non-negative matrix is said to be unichain if all its essential indices
form one single strongly connected component; observe that a unichain matrix
with no inessential indices is irreducible.

3.2. Invariant and limit distribution

Going back to Markov chains, a chain is said to be irreducible, primitive, cyclic
or unichain according to whether the transition matrix P is of this kind. Anal-
ogously, the states in S can be classified into periodic, essential or inessential
according to the properties of the indices of the corresponding matrix.

A distribution p is invariant for P if pTP = pT (that is, if p is a left eigenvector
of P ). Also, given a distribution p, when limk→∞ pTP k is defined, it is called
the limit distribution of p under P . Observe that if limk→∞ P k is defined, then
limk→∞ pTP k = pT (limk→∞ P k), but the left-hand side of previous identity can
be defined even if the right hand side is not. A way to understand the limit
behaviour of the chain is to consider the Cesàro limit

P ∗ = lim
n→∞

1
n

n−1∑
k=0

P k,

that, as it is well known [16], is always defined and is equal to limk→∞ P k whenever
the latter is defined (in such a case, the latter is denoted by P∞). In particular,
it holds that

P ∗P = PP ∗ = (P ∗)2 = P ∗

a fact that allows to draw very general conclusions about the invariant and limit
distribution of the chain, as summarised by the following

Proposition 3.1. Let P be a stochastic matrix. A distribution p is invariant
for P iff pT = qTP ∗ for some q. Moreover p is the limit distribution of a given
q under P iff pT = qTP ∗. Finally, the limit limk→∞ qTP k is defined for every
distribution q iff limk→∞ P k is defined.

Notice that a simple consequence of the previous proposition is that there is
always at least one invariant distribution.

Due to the previous considerations, the long-term behaviour of a Markov chain
is completely specified by the Cesàro limit of its transition matrix. The limit
depends on the properties of P . Indeed, P is unichain iff the Cesàro limit satisfies
P ∗ = 1pT , where the positive entries of p correspond to the normalised left Perron
eigenvector of the irreducible submatrix of P corresponding to essential indices [24].
By Proposition 3.1, this is equivalent to the following two conditions: there is a
unique invariant distribution; there is a unique limit distribution (albeit it might
happen that for some distribution q the limit limk→∞ qTP k is not defined). If we
consider also the periodicity of indices, this leads to

Proposition 3.2. If P is a unichain stochastic matrix such that its essential
indices are aperiodic, then limk→∞ P k = 1pT , where p is the unique invariant
distribution of P , and limk→∞ qTP k = p for every distribution q.
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We conclude by noting in passing that the literature on stochastic processes
uses a slightly different terminology. Since

Pr{Xk = i for infinitely many k | X0 = i}

is equal to 1 or 0 according to whether i is essential or inessential, respectively, it
is usual to call essential states recurrent and inessential ones transient. Moreover,
if the initial distribution of a Markov process is invariant, then the process is sta-
tionary. On the other hand, if the transition matrix is irreducible and the Markov
chain is stationary, then the initial distribution is the only invariant distribution.
For this reason, the invariant distribution of an irreducible Markov chain is also
named stationary.

4. Markov chains with restart

We are finally going to introduce formally the raison d’être of this paper:
PageRank. First note that the link structure of the web can be represented by the
web graph, whose nodes are web pages and arcs correspond to links. One could
try to assign a greater rank to pages that have a higher component in the limit
distribution of the natural random walk on the web graph. However, such an ap-
proach presents some problems: what initial distribution should be chosen? Will
the limit distribution be unique? How fast will the process converge to the limit?
A way [27] to overcome all these problems is to perturb the random walk so to
make it unichain and to be able to tune its convergence speed.

Here we extend this idea from the random walk related to PageRank to any
Markov chain; in this way we can highlight several connections of PageRank and
derived ranking schemes with previous research on perturbed Markov chains, pro-
viding easy and structured proofs of several useful results.

Perturbation theory of linear operators is a classic field [19] and several results
are known for the case of Markov chains [29]. A case of particular interest regards
analytic perturbations, i.e., the study of P (ε) = P + εP1 + ε2P2 + ε3P3 + . . . ,
where P and P (ε) are stochastic matrices, for a small enough ε > 0 and for some
matrices P1, P2, P3, . . . ; when 0 = P2 = P3 = . . . , the perturbation is said to be
linear.

Given a stochastic matrix P , a distribution v, and a real α ∈ [0 . . 1), we define
the matrix

R(P,v, α) = αP + (1 − α)1vT .

It is easy to see that R(P,v, α) constitutes a linear perturbation of P for P1 =
1vT −P and ε = 1−α. A Markov chain with transition matrix R(P,v, α) has the
following interpretation as a stochastic process: at every time step the next state
is chosen with probability α according to the transition probabilities given by P
or, with probability 1 − α, the chain is “restarted” at state i with probability vi.
For this reason we call such a process a Markov chain with restart. As anticipated,
the introduction of the perturbation is justified by the following
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Theorem 4.1. For every stochastic matrix P and distribution v, if α ∈ [0 . . 1),
then

• for every j such that vj > 0, j is essential and aperiodic for R(P,v, α);
• R(P,v, α) is unichain and all its essential indices are aperiodic.

Proof. Let R = R(P,v, α). If j is such that vj > 0, then due to the contribution
of (1 − α)1vT it is immediate to conclude that Rij > 0 for every index i, hence
j is essential; moreover there is a loop in j, so it is also aperiodic. Let now i be
an essential index of R and consider a j such that vj > 0 (such index must exist,
since v is a distribution); again, due to the contribution of (1 − α)1vT , there is
an arc from i to j, but j � i in R, otherwise i would be inessential; hence i and j
are in the same strongly connected component. �

Theorem 4.1 together with Proposition 3.2 imply that, for every stochastic
matrix P , any Markov chain with restart having transition matrix R(P,v, α) has
a unique limit (and invariant) distribution r(P,v, α).

In this setting, PageRank as defined in [27] is the limit distribution r(W,1/|NW |,
0.85), where W is the web graph endowed with the natural random-walk colour-
ing7. More generally, PageRank has been studied as the limit distribution r(W,v, α)
when v is an arbitrary preference vector [12] or considering the damping factor α
as a real parameter [1].

We now recast some known results, originally obtained studying PageRank, in
our more general framework. First of all, observe that Theorem 4.1 can be obtained
(albeit in a more algebraic and less intuitive way) noting that the perturbation
induces a strong separation in the spectrum of the matrix: if 1 ≥ λ2 ≥ · · · ≥ λk is
the spectrum of P , then the spectrum of R(P,v, α) is known [6, 13] to be

1 > αλ2 ≥ · · · ≥ αλk.

Moreover, the fact that the second largest eigenvalue of R(P,v, α) is less then or
equal to α < 1 implies

∥∥qT R(P,v, αk) − r(P,v, αT )
∥∥ = O(αk)

independently of q. This is a very relevant fact from the application point of view,
as the limit distribution can be efficiently obtained by successive (left) multiplica-
tion of q(k) by R(P,v, α) (the well-known Power Method [24]).

Viewing r(P,v, α) as the invariant distribution, one can also obtain the closed
form [13]

r(P,v, α) = (1 − α)vT (I − αP )−1, (1)

where (I − αP )−1 is defined since I − αP is non-singular for every α < 1.

7Provided that W has no sinks; otherwise, sinks must be patched by adding links to all other
nodes.
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The behaviour of such invariant distribution and its relationship with α has been
deeply investigated in [1], where the following Maclaurin expansion was obtained

r(P,v, α) = vT +
∞∑

k=1

αkvT (P k − P k−1)

together with a closed form for the derivatives of any order with respect to α.
Incidentally, we observe that such results could also be directly obtained from [29]
where a Maclaurin expansion is given for the more general perturbation αP +(1−
α)P1, where P1 is stochastic and unichain.

The behaviour of r(P,v, α) at the boundary values of α is given by

r(P,v, 0) = vT and lim
α→1−

r(P,v, α) = vTP ∗ (2)

where the first identity is trivial and the second one (which, by the way, confirms
a conjecture stated in [1]) can be obtained as follows. The resolvent of a stochas-
tic matrix P is the linear operator R(µ, P ) = (µI − P )−1, defined for every µ
which is not an eigenvalue of P ; it can be expanded into a Laurent series around
every eigenvalue of P [33, Chapter VIII, Section 8]. In particular, the expansion
around 1 is

R(µ, P ) =
P ∗

µ− 1
+

∞∑
k=0

(µ− 1)kQk+1

for a suitable matrix Q. This implies that

lim
µ→1+

(1 − µ)R(µ, P ) = P ∗,

whence, by applying (1), we get the limit (2).

5. Markov chains with restart and fibrations

It is now time to present our main result. We are going to relate fibrations
and Markov chains with restart, by showing that the limit distribution (and thus
PageRank values) along a fibre must be constant. This provides, by means of a
purely combinatorial construction, an exact constraint on a limit process.

Given an R+-coloured graph G and a non-negative vector v over NG, we define
the formal power series vector z(G,v, α) as

z(G,v, α) = (1 − α)vT
∞∑

k=0

αkGk.

If the spectral radius of G is not greater than 1 and α ∈ [0 . . 1), then the series
converges to (1 − α)vT (I − αG)−1. Recalling (1), this implies the following
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Theorem 5.1. For every stochastic graph G, distribution v and α ∈ [0 . . 1), the
vector z(G,v, α) is the unique invariant distribution of the matrix R(G,v, α), that
is, z(G,v, α) = r(G,v, α).

The series z(G,v, α) can be expressed in terms of the paths in G. First notice
that the colour function c of the graph can be extended by multiplication to all
paths by setting

c(〈i0a1i1 · · · ik−1akik〉) =
∏
j

c(aj).

The definition is motivated by the fact that, if G is separated and stochastic, then

c(〈i0a1i1 · · · ik−1akik〉) = Pr{Xk = ik, Xk−1 = ik−1, . . . , X1 = i1 | X0 = i0}

where (Xk)k∈N is any Markov chain with transition matrix G. Note that, in
particular, for a 0-length path π, we have c(π) = 1. Then, for every i, j ∈ NG and
k ∈ N we have (

Gk
)
ij

=
∑

π∈G∗(i,j),|π|=k

c(π),

and hence
zj(G,v, α) = (1 − α)

∑
π∈G∗(−,j)

α|π|vs(π) c(π) (3)

for every node j ∈ NG.
The values of the formal series z(−,−,−) are preserved by fibrations, provided

that the vectors involved are suitably transformed. Given a fibration f : G → B
and a non-negative vector u over NB, we define the lifting of u along f as the
vector uf over NG such that

(
uf

)
i
= uf(i).

Theorem 5.2. For every colour-preserving fibration f : G→ B and non-negative
vector u over NB,

z(G,uf , α) = z(B,u, α)f .

Proof. We must prove that zi(G,uf , α) = zf(i)(B,u, α) for every node node i of
G. Let us extend f to paths and consider its restriction to G∗(−, i), which maps
paths in G∗(−, i) to paths in B∗(−, f(i)). The restriction is a bijection because f
is a fibration, and thus paths lift uniquely. Hence,

∑
π∈G∗(−,i)

α|π|(uf
)
s(π)

c(π) =
∑

π∈G∗(−,i)

α|f(π)|uf(s(π)) c(f(π))

=
∑

ξ∈B∗(−,f(i))

α|ξ|us(ξ) c(ξ),

and the result follows from (3). �
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In particular, this implies that z(G,uf , α) is fibrewise constant. We conclude
that the same must be true of the limit distribution:

Theorem 5.3. Let G be stochastic, f : G → B be a colour-preserving fibration
and u a non-negative vector over NB such that uf is a distribution over NG. Then
the limit distribution r(G,uf , α) is fibrewise constant for every α ∈ [0 . . 1).

5.1. Applications to PageRank

The most immediate application of these results to PageRank is an easy con-
sequence of Theorem 5.3: if a graph G contains two nodes that are in the same
fibre of some colour-preserving fibration, then they have the same PageRank for
all α, provided that the preference vector is fibrewise constant and G is endowed
with its the natural random-walk colouring.

A more general result can indeed be obtained. Suppose you have two graphs G1

and G2 with n1 and n2 nodes respectively, colour them with their natural random-
walk colouring, and suppose they are epimorphically fibred over the same graph B
with two fibrations f1 : G1 → B and f2 : G2 → B that respect the colouring. For
instance, if f1 and f2 are outdegree-preserving fibrations and B is not coloured,
you can colour B so that f1 and f2 respect the colouring: this is possible, because
if f1(a1) = f2(a2) (for some a1 ∈ AG1 and a2 ∈ AG2) then the outdegree of s(a1)
is the same as the outdegree of s(a2), so a1 and a2 must have the same colour.

Assume now that i1 ∈ NG1 and i2 ∈ NG2 are two nodes that are identified by
the two fibrations (i.e., f1(i1) = f2(i2)), and consider the vectors u1 = 1/n1 and
u2 = 1/n2 over NB. By Theorem 5.1 and Theorem 5.2,

ri1
(
G1,u

f1
1 , α

)
= zi1

(
G1,u

f1
1 , α

)
= zf(i1)(B,u1, α)

=
n1

n2
zf(i2)(B,u2, α) =

n1

n2
zi2

(
G2,u

f2
2 , α

)
=
n1

n2
ri2

(
G2,u

f2
2 , α

)
.

In particular, the PageRank values of i1 and i2, computed with uniform preference
vector, coincide up to the multiplicative constant n1/n2.

6. Fibrations and stochastic graphs

The results of the previous section make it clear that it is interesting to build
fibrations having a stochastic graph as total graph; however, if f : G → B is a
colour-preserving fibration, and G is stochastic, B needs not be stochastic itself.
Since we are interested in stochastic graphs that are fibred over a common base,
we approach the problem of characterising R+-coloured graphs B over which sto-
chastic graphs can be fibred. To this aim, initially we shall require the fibration
to preserve colours only up to a multiplicative constant.

Formally, given an R+-coloured graph B, we want to establish necessary and
sufficient conditions under which there exists a stochastic graph G and an epimor-
phic fibration f : G → B that preserves colours up to a multiplicative constant
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Figure 3. An example of the construction ofG (upper part) from
B (lower part); fibers Fh and Fk are enclosed in dotted ellipses
(nh = 4 and nk = 3).

λ > 0, that is, c(f(a)) = λ · c(a) for all a ∈ AG. The constraints we provide will
turn out to be a special consequence of a more general property on the eigenvectors
of the matrices G and B, that will be discussed in Section 6.1.

The first step towards this goal is a combinatorial description of all possible
fibrations over B. There is a standard representation for fibrations [2, 14] that
extends the results about the classical representation of coverings by voltage as-
signments [9]: an epimorphic fibration over B whose fibre over h has cardinality
nh is described by:

(1) a nonempty set Fh of cardinality nh for each node h of B;
(2) a function ϕa : Fk → Fh for each arc a ∈ B(h, k).

Essentially, for each node of B we fix a fibre Fh. Then, we know that we must add
to G exactly |Fk| copies of each arc of B ending in k, and each copy must end in a
distinct element of Fk (as we need to lift uniquely that arc to each element of Fk).
Our only freedom now is to decide which node will be the source of each copy, and
the source is provided exactly by the function ϕa, which defines the source of the
copy associated with each element of Fk. We assume for simplicity that the Fh’s
are pairwise disjoint.

Geometrically, we are stacking |Fh| nodes of the graph G over h, as illustrated
in the example of Figure 3. Then, for each arc a of B going from h to k and every
node j ∈ Fk, we add an arc ãj in G, setting its target to j, and we freely choose its
source ϕa(j) in Fh.8 Clearly, if we want to preserve colours up to multiplication
by λ, a copy of arc a will have to be coloured by c(a)/λ.

8The data defining a fibration actually induce a presheaf on B∗, and this correspondence
extends to an equivalence between the category of fibrations over B and the category of presheaves
on B∗; see [2].
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These data define a total graph G that has nodes
⋃

h Fh, and arcs
⋃

k B(−, k)×
Fk. An arc 〈a, j〉 goes from ϕa(j) to j. Finally, we define the fibration f : G→ B
that maps every node i ∈ Fh to h, and every arc 〈a, j〉 to a.

If we additionally impose that G is stochastic, we must require that for all nodes
of G, the sum of the colours of the outgoing arcs is exactly 1, that is, for all nodes
h of B and all i ∈ Fh we require

∑
k∈NB

∑
a∈B(h,k)

∑
j∈Fk

c(a) [ϕa(j) = i]/λ = 1, (4)

where we used Iverson’s notation (a predicate between brackets has value 1 if true,
0 if false).

The condition we have given is not easily manageable. However, we can derive
a much more interesting necessary condition. Let us sum over i ∈ Fh:

∑
i∈Fh

∑
k∈NB

∑
a∈B(h,k)

∑
j∈Fk

c(a) [ϕa(j) = i] = λnh.

Rearranging the summation order, we get to

∑
k∈NB

∑
a∈B(h,k)

c(a)
∑
i∈Fh

∑
j∈Fk

[ϕa(j) = i] = λnh.

Now, the double internal summation is trivially nk, and once we move it outside,
the summation over a just gives Bhk. Thus, we arrive at

∑
k∈NB

Bhknk = λnh, (5)

which is an eigenvalue problem of the form Bn = λn, where n is a vector of fibre
cardinalities. In other words, we have proved the following

Theorem 6.1. Given an R+-coloured graph B, if there exist a stochastic graph G
and an epimorphic fibration f : G→ B that preserves colours up to a multiplicative
constant λ > 0, then B has a positive integer eigenvector associated with λ whose
h-th component is the cardinality of the fibre over h (i.e., |f−1(h)|).

Observe that the necessary condition of the previous theorem is satisfied, for
instance, when B is irreducible and has rational entries. On the other hand, the
condition is not sufficient: the existence of a positive integer eigenvector of B does
not guarantee the existence of a fibration from a stochastic graph, as equations (4)
on sets may not be satisfiable. Consider for example the graph B in Figure 4. The
vector n = 〈3, 1〉T is a solution of equation (5) for λ = 1. However, there is no
way to define the functions ϕa so to satisfy (4).

Finally, we note that B cannot have two positive eigenvectors associated with
distinct λ’s, since the following proposition holds.
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Figure 4. A graph over which no stochastic graph can be fibred.

Proposition 6.2. Let A be a non-negative matrix, and assume Ax = λx for some
x > 0. Then λ equals the spectral radius ρ(A) of A.

Proof. Note that necessarily λ is real and non-negative. Let v be a non-negative
eigenvector associated with the spectral radius ρ = ρ(A). Then there is an ε > 0
such that x − εv > 0, so An(x − εv) ≥ 0. This entails

λn‖x‖ = ‖Anx‖ = ‖An(x − εv) + εAnv‖ ≥ ‖εAnv‖ = ερn‖v‖,

so ρn = O(λn), and since λ ≤ ρ we have λ = ρ. �

So, in particular, if f : G → B and g : H → B are two epimorphic fibrations
that respect colours up to factors λ and µ, respectively, then necessarily λ = µ.
This fact allows one to rescale the colouring of B in a unique way (dividing by
λ = µ): this observation explains why we consider only fibrations that do respect
colours.

6.1. A deeper look

Actually, the computation we carried over has a much more general meaning
when we look at it the other way around: if w is a right eigenvector of G associated
with the eigenvalue λ, the equation Gw = λw can be rewritten as the system of
equations ∑

j∈NG

∑
a∈G(i,j)

c(a)wj = λwi,

where i ∈ NG. Summing over i ∈ f−1(h) for any node h of B we obtain (after a
rearrangement)

∑
j∈NG

∑
i∈f−1(h)

∑
a∈G(i,j)

c(a)wj = λ
∑

i∈f−1(h)

wi.

The two internal summations actually correspond (because of the lifting property)
to a summation over arcs of B:∑

j∈NG

∑
a∈B(h,f(j))

c(a)wj = λ
∑

i∈f−1(h)

wi.
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If we now break the summation over j as a double summation over the nodes of
B and over their fibres, we obtain

∑
k∈NB

∑
j∈f−1(k)

∑
a∈B(h,f(j))

c(a)wj = λ
∑

i∈f−1(h)

wi,

and this finally leads us to

∑
k∈NB

∑
a∈B(h,k)

c(a)
∑

j∈f−1(k)

wj =
∑

k∈NB

Bhk

∑
j∈f−1(k)

wj = λ
∑

i∈f−1(h)

wi.

The last equation exactly states that the vector u over NB defined by uh =∑
i∈f−1(h) wi is an eigenvector of B associated with the eigenvalue λ, provided

that it is nonzero. In other words,

Theorem 6.3. Given an R+-coloured graph G and a colour-preserving fibration
f : G→ B, if w is a right eigenvector of G associated with the eigenvalue λ, then
the vector u defined by

uh =
∑

i∈f−1(h)

wi,

is a right eigenvector of B for λ, provided that u 	= 0.

The previous theorem is a dual counterpart of the classic result about lifting of
eigenvectors used in spectral graph theory [28], which states that a left eigenvector
u of B associated with the eigenvalue λ can be lifted to an eigenvector for the same
eigenvalue by copying its coordinates fibrewise. Now, Theorem 6.1 can be obtained
as a special consequence of Theorem 6.3, noting that being stochastic is equivalent
to having 1 as a right eigenvector associated with the eigenvalue 1.

6.2. Computing over the base

Theorem 5.2 gives a precise relation between the formal series z(G,uf , α) and
z(B,u, α) whenever f : G→ B is a colour-preserving fibration. If G is stochastic
and uf is a distribution over NG, then z(G,uf , α) is indeed the limit distribution
of any Markov chain with restart having transition matrix R(G,uf , α); hence, if
we are interested in computing such a distribution, we can actually perform the
computation over B, which might be much smaller. Here we must be careful,
however: B is not itself stochastic, and u is not a distribution, so z(B,u, α) does
not admit a stochastic interpretation. In particular, algorithms that are commonly
used to compute r(−,−,−), like [7, 11, 17, 18, 21], cannot in general be applied to
this case. However, by Theorem 6.1, the matrix B admits a positive eigenvector
associated with the eigenvalue 1 and this allows us to proceed as follows.

It is possible to transform any R+-coloured graphB to obtain a stochastic graph
B′ (having the same underlying graph as B), whenever the matrix associated with
B admits a positive eigenvector w. It is sufficient to define the colouring function
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c′ of B′ by setting for each arc a

c′(a) =
1
ρ

wt(a)

ws(a)
c(a),

where ρ is the spectral radius of B and c is its colouring function. The resulting
graph is indeed stochastic:

Proposition 6.4. If B is an R+-coloured graph whose matrix admits an eigen-
vector w > 0, then the graph B′ is stochastic.

Proof. By Proposition 6.2, the eigenvalue associated with w is the spectral radius
ρ of the matrix B. Moreover, it is easy to show that

B′ =
1
ρ
Diag(w)−1BDiag(w)

where B′ denotes, as usual, the matrix associated with the graph B′ and, as it is
immediate to see, is stochastic. �

The following theorem illustrates how the formal series z(−,−,−) changes when
transforming a graph B (whose matrix has a positive eigenvector) into the sto-
chastic graph B′.

Theorem 6.5. If B is an R+-coloured graph such that its matrix admits an
eigenvector w > 0, then, for every non-negative vector u over NB,

z(B,u, α) =
1 − α

1 − αρ
Diag(w)−1 z(B′,Diag(w)u, αρ),

where ρ is the spectral radius of B.

Proof. First of all, notice that for every path π

cB′(π) =
1
ρ|π|

wt(π)

ws(π)
cB(π).

Thus, by equation (3), we get

zh(B′,u, α)
(1 − α)

=
∑

π∈B∗(−,h)

α|π|us(π) cB′(π)

= wh

∑
π∈B∗(−,h)

(
α

ρ

)|π| us(π)

ws(π)
cB(π) = wh

zh(B,Diag(w)−1u, α/ρ)
1 − α/ρ

,

hence the result. �

As a consequence of the previous observations, we obtain the following
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Theorem 6.6. Let G be a stochastic graph, f : G → B be a colour-preserving
epimorphic fibration, and v be a fibrewise constant distribution over NG. Let
w = (wk)k∈NB be the vector whose k-th entry is wk = |f−1(k)|. Then, for every
node i of G,

ri(G,v, α) =
1

wf(i)
rf(i)(B′,Diag(w)u, α),

where u is such that v = uf .

Proof. First note that B′ is a stochastic graph (since f being epimorphic implies
w > 0) and Diag(w)u is a distribution over NB, hence the right-hand side is
well-defined. Applying Theorem 5.1 and Theorem 5.2, we have

ri(G,uf , α) = zi(G,uf , α) = zf(i)(B,u, α),

whence the result is obtained by applying Theorem 6.5 (with ρ = 1) and again
Theorem 5.1 to B′. �

Given a stochastic graph G and a distribution v over NG, the previous theorem
suggests that we should try to compute a fibration f : G → B such that v
is fibrewise constant, so to compute the limit distribution on a smaller graph.
Indeed, there is a minimum B with such a property, as the theorems given in
Section 2.1 extend immediately [2] to graphs coloured on the nodes (where colours
of the nodes represent the preference vector v of the Markov chain with restart)
and fibrations preserving all colours. We shall see in Section 7 that B can actually
be computed quite efficiently.

6.3. A worked-out example

Consider the graphG shown in Figure 5 (left), endowed with its natural random-
walk colouring. The graph is fibred over B, shown in Figure 5 (centre), via the
colour-preserving fibration f : G → B defined on the nodes by f−1(0) = {0, 1},
f−1(1) = {2, 3} and f−1(2) = {4, 5, 6, 7} (any definition on the arcs is fine). Now
suppose you want to compute the PageRank corresponding to the preference vector

v = 〈1/20, 1/20, 1/20, 1/20, 1/5, 1/5, 1/5, 1/5, 1/5〉T .

Since this vector is fibrewise constant, we can apply Theorem 6.6, with u =
〈1/20, 1/20, 1/5〉T , w = 〈2, 2, 4〉T and B′ obtained by recolouring B, as shown
in Figure 5 (right).

In other words, we apply the standard PageRank computation to the graph B′

using the preference vector Diag(w)u = 〈1/10, 1/10, 4/5〉; a direct computation
gives

r(B′,Diag(w)u, α) =

〈
α2 + 8α+ 1, 8α2 + α+ 1, α2 + α+ 8

〉
10(α2 + α+ 1)

·
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Figure 5. Two graphs G and B (with a fibration f : G → B),
and the corresponding stochastic graph B′.

Hence, for example, applying Theorem 6.6,

r2(G,v, α) =
1
2
r1(B′,Diag(w)u, α) =

8α2 + α+ 1
20(α2 + α+ 1)

·

7. Computation of the minimum base and graph
isomorphism

As observed at the end of Section 6.2, Theorem 6.6 suggests that, given a
Markov chain with restart specified by a stochastic graph G and a distribution v,
we should try to obtain a minimal fibration f : G → B such that v is fibrewise
constant, so to compute the limit distribution on a smaller graph. Formally, we
are considering the following problem

Problem: Minimum base labelling

Input: A graph G and a preference vector v over NG

Output: A labelling � : NG → { 0, 1, . . . , k − 1 } such that, for any two
nodes i, j ∈ NG, �(i) = �(j) iff i and j are in the same fibre of any minimal
fibration for which v is fibrewise constant.

An algorithm for Minimum base labelling produces canonical labellings iff its
output is automorphism invariant.

This problem is actually equivalent to the well-known partition refinement prob-
lem, assuming that the initial partition is the one induced by the preference vec-
tor v. Starting from ideas appearing in Hopcroft’s minimal-automaton construc-
tion [15], Cardon and Crochemore [4] devised a partition-refinement algorithm
that in our terminology computes the minimum base labelling of a directed graph.
Their algorithm does not per se provide canonical labellings, but it can be easily
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adapted to do so, and works in time O((n + m) logn), for an uncoloured graph
with n nodes and m arcs9).

Indeed, this idea is not new, and has been used earlier [5, 23] by people work-
ing on graph isomorphism. This comes as no surprise, since graph isomorphism
between fibration-prime graphs can be solved in polynomial time. As a matter of
fact, by Proposition 2.3, if we establish a canonical order on labelled trees, we can
canonically sort the nodes of a fibration prime graph; once the nodes are sorted,
the isomorphism problem for fibration-prime graphs can be solved with a linear
check.

For general graphs, in one of the seminal papers on the subject [5], Corneil and
Gottlieb essentially propose to build the minimum base first, and then to reason
on the fibres separately. If the minimum bases are not isomorphic, of course, iso-
morphism is impossible. Brendan McKay pushed this idea much further writing
one of the fastest graph-isomorphism solvers, nauty [23], which is also able to
compute generators for the automorphism group. nauty starts by building the
coarsest equitable partition of the nodes, which in our language is the minimum
base for the symmetric representation of the graph. If the fibres are trivial, the
algorithm can canonically sort the vertices and perform a check. Otherwise, the
algorithm starts a backtracking procedure, trying to break fibres by choosing se-
lected elements. The time required for the construction of the minimum base is
O(n2 logn) for a graph with n nodes.

The connection between graph isomorphism and minimum bases has recently
resurfaced, albeit unnoticed, in a paper by Gori, Sarti and Maggini [8]. They pro-
pose a polynomial isomorphism algorithm for a class of graphs defined in terms of
PageRank: a graph with n nodes is said to be Markovian spectrally distinguish-
able if there are values α0, α1, . . . , αn−1 of the damping factor whose associated
PageRank vectors form an invertible matrix. This class is in fact subsumed by
fibration-prime graphs, since

Theorem 7.1. A Markovian spectrally distinguishable graph is fibration prime.

Proof. A nonprime graph is nontrivially fibred over its minimum base, and by
Theorem 5.3 it contains at least two nodes whose PageRank values are the same
for all values of the damping factor. As a consequence, it is impossible to build
an invertible matrix using a set of PageRank vectors (at least two columns will
always be equal). �

The converse of the previous theorem does not hold. The graph shown in
Figure 6 is fibration prime (check the universal total graphs at depth three), and
nonetheless the PageRank vector is

〈
α+ 1

2(2 + α)
,

1
2(2 + α)

,
1
4
,
1
4

〉T

,

9We observe that in [4] the authors give an O(m log n) bound, but there seems to be a mistake
in the computation of the bound, which is more correctly O((n + m) log n).
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Figure 6. A fibration-prime graph that is not Markovian spec-
trally distinguishable. Nodes 2 and 3 have the same PageRank,
independently of α.

so node 2 and 3 have the same PageRank (independently of α). We conclude that
the class of Markovian spectrally distinguishable graphs is strictly smaller than
the class of fibration-prime graphs.

All in all, we conclude that the isomorphism of fibration-prime graphs (and a
fortiori of Markovian spectrally distinguishable graphs) is decidable in time O((n+
m) logn) using purely discrete means. The space used by the above algorithms is
O(m + n). The PageRank-based algorithm proposed by Gori et al. comes with
no detailed complexity analysis (the authors just notice that the overall algorithm
must run in polynomial time), whereas we can obtain an almost linear upper
bound.

The algorithms considered so far actually deal with uncoloured graphs only. The
original paper about nauty does not discuss coloured graphs, whereas Cardon and
Crochemore’s does; however, the authors assume to be able to enumerate in linear
time all arcs with a given colour. This is in contrast with a more realistic model
in which arcs are enumerated in linear time, and then a constant-time colouring
function provides the colour for each arc. Cardon and Crochemore’s algorithm can
be easily patched to work with the latter model, but in this case the time bound
becomes O((n + m logm) logn). The algorithm used by nauty can be adapted
similarly.

7.1. Space O(n)

When dealing with very large web graphs, maybe using a compressed represen-
tation (see, e.g., [3]), it is not always possible to use space O(m). In this section
we discuss how to implement a minimum base algorithm in additional space O(n)
(besides the space required to store the graph), paying of course a price in terms
of computation time.

Let us start with a simple informal description of the algorithm. Throughout
the algorithm k is the number of labels, and � : N → { 0, 1, . . . , k − 1 } is a
surjective labelling of nodes: at the end of the algorithm, two nodes will have the
same label iff they have the same universal total graph or, equivalently, if they are
in the same fibre of any minimal fibration.
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Let G be a C-coloured graph with colouring function c : A → C, and assume
a linear order on the colours. The algorithm performs a refinement step until no
more refinement is possible:

(1) Set k = 1 and � to the unique function N → {0}.
(2) For each node i, if G(−, i) = {a0, a1, . . . , ad−(i)−1}, then let m(i) be the

multiset

m(i) =
{〈c(a0), �(s(a0))〉, 〈c(a1), �(s(a1))〉, . . . , 〈c(ad−(i)−1), �(s(ad−(i)−1))〉

}
;

update � so that two nodes i and j have the same label iff m(i) = m(j).
(3) If k = n or the codomain of � has not changed, stop; otherwise, set k to

the cardinality of the codomain of � and restart from (2).
We assume a standard model in which it is possible to iterate over the list of
incoming arcs in linear time. Thus, the crux of the algorithm is the update of the
labelling function �. Since we have a problem of uniqueness, a possible approach is
enumerating the multisets m(i) in sorted order: equal elements will be enumerated
consecutively, making it trivial to update �.

To accomplish the task, we must define an easily computable order on multisets
of pairs in C × N. The pairs themselves can be easily ordered lexicographically,
since C is ordered, and by choosing for each multiset a sorted canonical represen-
tative we will be able to compare multisets in a lexicographic fashion.

The first point to examine, thus, is the time required to compute the canonical
representative for all multisets. Note that we are sorting, for each node x, a list
of d−(i) elements, which can be easily done in time O(d−(i) log d−(i)). This gives
an overall bound of ∑

i∈N

O(d−(i) log d−(i)) = O(n+m logm)

for the construction of canonical representatives.
We now sort the canonical representatives using a merge sort, carefully counting

the number of times a canonical representative is used: after each comparison one
element is emitted, and each element is emitted exactly once. We conclude that
no more than m list elements are ever compared, so the most important cost
in a merging phase is the time required to build all canonical forms (since we
want to obtain space O(n), we cannot build all representatives and reuse them
for all phases): multiplying by logn (the number of merging phases) and recalling
Theorem 2.2 we get the following

Theorem 7.2. A mergesort-based algorithm for the construction of the mini-
mum base with on-demand canonical representative construction uses time O(q(n+
m logm) logn) and space O(n + ∆−), where ∆− is the maximum indegree of G
and q is the number of refinement steps.

The presence of ∆− is due to the fact that at some point the list for the node
with largest indegree will have to be built. If the graph is separated, ∆− ≤ n, and
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Table 1. Experimental results about the dimension of the min-
imum base for some real-world Web snapshots.

Dataset Number of nodes Number of fibres Average fibre size
WebBase 118,142,155 41,705,767 2.83
.it 41,291,594 15,245,587 2.71
.uk 39,459,925 14,154,663 2.79

the bound reduces to O(n). A similar bound can be obtained for quicksort if the
implementation uses actual medians as pivots. The number of refinement steps
q in the worst case is O(n), but experimentation with actual web graphs shows
that it is actually much smaller, making the algorithm feasible even for very large
graphs.

We remark that the labels assigned by this algorithm are canonical, as they
correspond to the lexicographic order of the universal total graphs.

8. Experimental results and conclusions

The discussion of the previous section highlights a rather interesting fact: there
is an entirely discrete algorithm (the construction of the minimum base) whose
output, by Theorem 5.2, imposes constraints on the values of the limit distribution
of a Markov chain. Thus, a limit process is constrained by a discrete process
computable in polynomial time. Of course, the condition provided by Theorem 5.2
is sufficient only, but nonetheless it is fascinating that the discrete structure of the
underlying graph can impose such a significant constraint on the limit distribution.
Moreover, Theorem 6.6 can be used, at least in principle, to reduce the efforts
required to compute the limit distribution by performing the actual computation
on the base, which may be much smaller.

One may wonder whether this idea can be fruitfully applied for the computation
of PageRank of real-world web graphs; actually, it might be the case that such
graphs are themselves fibration-prime, which would make Theorem 6.6 useless
in practice. On the contrary, some preliminary experiments performed on real
datasets show that real web graphs exhibit a minimum base that is about 3 times
smaller than the corresponding graph (see Tab. 1). Moreover, experiments show
that the time required by our algorithm to compute the minimum base makes
the use of Theorem 6.6 a viable option. As an aside, we observe that fibre sizes
roughly follow a power-law distribution, as shown in Figure 7; we don’t have any
theoretical explanation of this fact, which certainly needs further investigation.

There is more, however: if we interrupt the minimum base construction algo-
rithm at step k (in the O(n) version) we obtain a partitioning of the nodes into
classes sharing the first k levels of their universal total graph. Thus, in the case of
a Markov chain with restart, the difference of the limit distribution for two nodes
in the same class is bounded by αk. Once again, we have a purely combinatorial
computation that imposes constraints on the values of the limit distribution.
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