Lecture 6
Greedy algorithms: interval scheduling

COMP 523: *Advanced Algorithmic Techniques*
Lecturer: *Dariusz Kowalski*
Overview

Previous lectures:
• Algorithms based on recursion - call to the same procedure solving smaller-size input

This lecture:
• Greedy algorithms
• Interval scheduling
Greedy algorithm’s paradigm

Algorithm is **greedy** if :
- it builds up a solution in *small steps*
- it chooses a decision at each step myopically to *optimize* some *underlying criterion*

Analyzing **optimal greedy** algorithms by showing that:
- in every step it is not worse than any other algorithm, or
- every algorithm can be gradually transformed to the greedy one without hurting its quality
Interval scheduling

Input: set of intervals on the line, represented by pairs of points (ends of intervals)

Output: finding the largest set of intervals such that none two of them overlap

Greedy algorithm:

• Select intervals one after another using some rule
Rule 1

Select the interval which starts earliest (but not overlapping the already chosen intervals)

Underestimated solution!
Rule 2

Select the interval which is shortest (but not overlapping the already chosen intervals)

Underestimated solution!
Rule 3

Select the interval with the fewest conflicts with other remaining intervals (but still not overlapping the already chosen intervals)

Underestimated solution!
Rule 4

Select the interval which ends first (but still not overlapping the already chosen intervals)

Hurray! Exact solution!

________ _______ _______ _______ _______
__

_________ __________________

_________ _______ _______ _______ _______ _______ _______

_________ _______

Lecture 6: Greedy algorithms
Analysis - exact solution

Algorithm gives non-overlapping intervals:
obvious, since we always choose an interval which does
not overlap the previously chosen intervals

The solution is exact:
Let A be the set of intervals obtained by the
algorithm, and Opt be the largest set of pairwise
non-overlapping intervals. We show that A must
be as large as Opt.
Let $A = \{A_1, \ldots, A_k\}$ and $Opt = \{B_1, \ldots, B_m\}$ be sorted. By definition of Opt we have $k \leq m$.

Fact: for every $i \leq k$, A_i finishes not later than B_i.

Proof: by induction.

For $i = 1$ by definition of a step in the algorithm.

Suppose that A_{i-1} finishes not later than B_{i-1}. From the definition of a step in the algorithm we get that A_i is the first interval that finishes after A_{i-1} and does not overlap it. If B_i finished before A_i then it would overlap some of the previous A_1, \ldots, A_{i-1} and consequently - by the inductive assumption - it would overlap B_{i-1}, which would be a contradiction.
Analysis - exact solution \textit{cont.}

Theorem: A is the exact solution.

Proof: we show that $k = m$.

Suppose to the contrary that $k < m$. We have that A_k finishes not later than B_k. Hence we could add B_{k+1} to A and obtain bigger solution by the algorithm - contradiction.
Time complexity

Implementation:

• Sorting intervals according to the right-most ends
• For every consecutive interval:
 – If the left-most end is after the right-most end of the last selected interval then we select this interval
 – Otherwise we skip it and go to the next interval

Time complexity: \(O(n \log n + n) = O(n \log n) \)
Conclusions

- Greedy algorithms: algorithms constructing solutions step after step using a local rule
- Exact greedy algorithm for interval selection problem - in time $O(n \log n)$ illustrating “greedy stays ahead” rule
Textbook and Exercises

- Chapter 4 “Greedy Algorithms”
- All Interval Sorting problem from Chapter 4